Detection of dust settling with ALMA

With Yann Boehler (CRyA), Anne Dutrey (LAB), Stephane Guilloteau (LAB) and Vincent Pietu (IRAM)

I) Predicted settling

II) Dust grain emissivity

III) Disks modeling and results

I) Predicted settling

II) Dust grain emissivity

III) Disks modeling and results

Settling:

- in favour : star gravity
- against : coupling with gas (pressure, turbulence)
 - vertical segregation in function of the grain size

Dullemond et al., 2007

What we need to know:

- the vertical distribution
- the emissivity

In function of the grain size

Adapted from S. Fromang & R. P Nelson, 2009

Théorie, simulations et observations:

- small grains: α = 0.05 (Pinte et al,2008, IR obs,) or even 0, discussion Fromang.
- big grains: α = 0.5 (Dubrulle et al, 1995) (Carballido et al, 2006)

Vertical gaussian distributions

- several types of grains:
- bigger are the grains, smaller are their scale height

scale height in AU

Vertical gaussian distributions

- several types of grains:
- bigger are the grains, smaller are their scale height

scale height in AU

I) Predicted settling

II) Dust grain emissivity

III) Disks modeling and results

Dust grain emission

Method:

Parametrised law allowing to determine the emission coefficients in function of λ and of the grain radius

Calibration of the emissivity curves

Data coming from Ricci et al, 2010:

- obtained by the Mie theorie
- With for composition: 10 % astronomical silicates, 20 % of carbonaceous

material, 30 % of water ice and 40% of vacuum

I) Predicted settling

II) Dust grain emissivity

III) Disks modeling and results

Pseudo-observations created

Physical characteristics	Adopted values
type of grains	Moderate ($\leq 3 \text{ mm}$) or big ($\leq 10 \text{ cm}$)
gas scale height	in hydrostatic equilibrium (Eq. 5)
Temperature	$T_k(r) = 30 \left(\frac{r}{R_0}\right)^{-0.4}$ Kelvin
Density	$\Sigma_{g}(r) = 3.4 \left(\frac{r}{R_{0}}\right)^{-1} \text{ g.cm}^{-2}$
Reference radius	$R_0 = 100 \text{ AU}$
Disk edges	$R_{int} = 3 \text{ AU} \text{ and } R_{out} = 100 \text{ AU}$
Inclinations	70, 80, 85 and 90°

Conditions of observation :

- Maximum baselines of 2.5 km

- 4 wavelenghts: 0.5mm (0.45"), 0.9 mm (0.89"), 1.3 mm (0.13") and 3mm (0.30")

- 30 minutes of integration time per frequency and a thermal noise of 111, 30, 20 and 13 μ Jy (respectively).

Comparison of settled disks and non-settled disks having the same gas distribution

Pseudo-Images of disks viewed: - at 0.5mm (0.045 ") - with ALMA in a configuration

with Bmax = 2.5 km

The dust settling is visible for an inclination $> 70^{\circ}$

Boehler et al, 2012

Differences between a settled pseudoobservation and the closest non-settled model

λ (in mm)

Left column :

pseudo – observation of settled disks)

Middle column:

Non settled disks obtained after minimization

Right column:

difference in emission of both disks

resolution too weak at 3 mm
The non-settled model has too

much emission at high altitude

Scale height of a settled disk

Scale height at 100 UA

Boehler et al, 2012

Dust scale height < gas scale height in hydrostatic equilibrium

Influence of the phase noise

Conclusion

Dust settling observable with ALMA:

- With baselines up to 2.5 km:

from 0.5 to 1.3 mm and an integration time of 30 mn an disk inclination > 75-80°

- Longest baselines are necessary to observe at 3 mm

Observational strategy:

First step :

Use moderates baselines to observe settling

Second step :

Use two different wavelengths, by keeping the same angular resolution, to evaluate the dust scale height for two different sizes of grains.

Disks with inclinations

- OPH-E_MM3: 90°, at 140pc, diameter of 210 AU, dans le nuage d'ophiucus
- Rem: les notations OPH-(A,B,C,D,E) se réfèrent à des cœurs de formations d'étoiles dans le nuage,
- Beta pic: 90°, à 19.3 pc, et un diamètre de 501 AU.
- CB 26: 88°, à 140 AU et un diamètre de 770 AU.
- HH 30: 83°, à 140 AU et un diamètre de 420 AU.
- DN Tau: 77°, à 140 AU et un diamètre de 70 AU.
- DG Tau B: 75°, à 140 pc et un diamètre de 550 AU.
- AA tau: 75°, à 140 pc et un diamètre de 187 AU.