### Dust Dynamics in Kelvin-Helmholtz Instabilities

#### Tom Hendrix and Rony Keppens

Centre for mathematical Plasma-Astrophysics K.U.Leuven, Belgium

Marseille, 20 Sept. 2012





### Simulating Dust in Space



### **MPI-AMRVAC**

Study dust dynamics using numerical simulation:

### MPI-AMRVAC

- Grid based parallel code
- Adaptive mesh-refinement
- Up to 3D Cartesian and curvilinear grids
- Several physics modules: HD, MHD, SR, HD+Dust,...
- Written in fortran

Info: Keppens et al., 2012

Get it now at homes.esat.kuleuven.be/~keppens/

### HD multi-fluid dust module



- Dust as extra fluids
- Dust is pressureless gas
- Every dust species has a set grain size and grain density
- Gas-dust coupling using combined Epstein + Stokes drag law

### Grain size distribution

Following simulations:

- All dust fluids have same grain density, i.e. silicate densities ( $ho=3.3~{\rm g~cm^{-3}}$ )
- Different species represent different parts of the size distribution
- Typically canonical ISM size distribution  $(n(a) \propto a^{-3.5})$
- Grains radii *a* between 5nm and 250nm, each of the *N* dust fluids represents a part from  $a_{min,i}$  to  $a_{max,i}$ , which are chosen by setting equal parts of the total dust mass in each dust fluid.
- Effective radius  $\bar{a}_i$  is weighted by the drag force over the represented interval between  $a_{min,i}$  and  $a_{max,i}$



# Dusty Kelvin-Helmholtz Instability



#### Dusty Keivin-Heining

#### Dusty Kelvin-Helmholtz Instability

7 / 26

### Classical KHI:

Shear induced instability

Kelvin-Helmholtz Instability

- No density or pressure difference needed
- Most simple setup: discontinuity in velocity is unstable for all wavelengths
- Stabilization can be introduced by surface tension of a transition layer



De Sterrennacht, Vincent van Gogh



### Kelvin-Helmholtz Instability

Approach: We study the effect of dust on the KHI by comparing the analytical gas-only solution with gas+dust simulations.

#### Setup:

- Stabilized configuration with two layers, separated by a thin layer.
- Uniform gas density.
- Effective resolution 1024×2048.
- Basic setup: 4 dust types, size distribution between 5nm and 250nm.
- Subsonic velocity difference.



### Linear phase

### Solving the dispersion relation for gas-only:



T. Hendrix

Marseille, 20 Sept. 2012

### Linear phase



Gas linear phase growth known from solving the dispersion relation. Growth in the simulations can be inferred from the kinetic energy perpendicular to the flow:



### Linear phase

From which we derive the dependency of the growth rate on the wavelength of the perturbation.



### Linear phase

From which we derive the dependency of the growth rate on the wavelength of the perturbation.



### Linear phase

From which we derive the dependency of the growth rate on the wavelength of the perturbation.



Dusty Kelvin-Helmholtz Instability



### Kelvin-Helmholtz Instability

# So, what does it look like?





### Non-linear phase: The Dust Vacuum Cleaner



Exponential decrease in dust density from start of non-linear phase:



T. Hendrix

Dust Dynamics in KHI

Marseille, 20 Sept. 2012

17 F 1 - 3 - 3

### Non-linear phase: The Dust Vacuum Cleaner







### Non-linear phase

After initial linear KH-phase: dust separation phase.





Heavier dust species tend to clump to higher densities:





### Strength of clumping deceases with dust/gas ratio





### 3D simulation

### Setup:

- 2 dust species (between 5nm and 250nm)
- Uniform gas density
- Effective resolution  $256 \times 1024 \times 256$
- Physical size  $\sim (2\lambda)^3$
- Dust/Gas ratio 0.1
- $\kappa = k_x D = 0.7968$









Percentage of the volume where the dust increases a factor between 2.5 and 10:





In 3D, enhanced dust densities end up in "filaments" along the vacuum bubbles:



# Thank you for your attention, questions?