
Instabilities in Protoplanetary Disks

• Compare lines of constant entropy with 
lines of constant angular momentum 
assuming adiabatic displacement.

➡ Displaced parcels move vertically 
towards the line of constant entropy

➡ Displaced parcels move radially 
towards the line of constant angular 
momentum.
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ŷ (7)

J = J

0
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Adding cooling

• Adding cooling requires us to also 
consider the line of constant angular 
momentum of the background fluid

➡ Constant angular momentum lines 
can’t straddle the line of constant 
entropy

• Rapid cooling: nearly free motion along 
the line of constant angular momentum 
for the background fluid
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Overstability

• Adiabatic system: all forces are conservative

➡ No possibility of an overstability

• Non-adiabatic motion: room to play

➡ Lesur & Papaloizou 2010

• Numerics

➡ Klahr, Nelson et al

• Here: zero perturbed pressure

➡ Parcel analysis
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ŷ (9)

J = J

0
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Dispersion Relation

• Linearized equations 
(assuming no pressure 
perturbations)

• Dispersion relation:

➡ Radial epicyclic

➡ Vertical Brunt-Vaisala

➡ Perturbative term
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NOTES

Alexander Hubbard, Hubert Klahr

1. INSTABILITY CRITERIA

The stability of a rotating stratified fluid (which allows
a steady state) can be considered by finding the lines of
constant entropy and constant angular momentum under
adiabatic transport (i.e. the line along which an adiabat-
ically displaced parcel of gas will orbit circularly). An
displaced parcel will then move buoyantly vertically to-
wards the line of constant entropy, and radially towards
the line of constant angular momentum. In general in a
protoplanetary disk these will both have positive slop in
the R–z plane. If the line of constant entropy is steeper
than that of constant angular momentum, the system is
unstable, and otherwise it is stable. Decades of study
has shown that protoplanetary disks are quite generally
stable.
Allowing for thermal relaxation adds consideration of

the line of constant angular momentum of fully thermally
relaxed fluid. However, these two lines of constant angu-
lar momentum cannot straddle the line of constant en-
tropy as displacement along the line of constant entropy
is both adiabatic and fully relaxed: the displaced parcel
cannot be both pushed radially inwards and outwards.
Allowing thermal relaxation therefore does not change
the stability of the disk.
Overstabilities (growing oscillations, for example grow-

ing vortices) are a di↵erent matter. In the adiabatic
limit, the pressure force is

F p = �1

⇢
rp / 1
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rp / rp1�� , (1)

so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
The full equations are then:
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
the full freedom of s.
We spatial displace a parcel of gas, originally at R =

R0, z = z0, s = s0 = s(R0, z0), with linearized parame-
ters
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with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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1. INSTABILITY CRITERIA

The stability of a rotating stratified fluid (which allows
a steady state) can be considered by finding the lines of
constant entropy and constant angular momentum under
adiabatic transport (i.e. the line along which an adiabat-
ically displaced parcel of gas will orbit circularly). An
displaced parcel will then move buoyantly vertically to-
wards the line of constant entropy, and radially towards
the line of constant angular momentum. In general in a
protoplanetary disk these will both have positive slop in
the R–z plane. If the line of constant entropy is steeper
than that of constant angular momentum, the system is
unstable, and otherwise it is stable. Decades of study
has shown that protoplanetary disks are quite generally
stable.
Allowing for thermal relaxation adds consideration of

the line of constant angular momentum of fully thermally
relaxed fluid. However, these two lines of constant angu-
lar momentum cannot straddle the line of constant en-
tropy as displacement along the line of constant entropy
is both adiabatic and fully relaxed: the displaced parcel
cannot be both pushed radially inwards and outwards.
Allowing thermal relaxation therefore does not change
the stability of the disk.
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so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
the full freedom of s.
We spatial displace a parcel of gas, originally at R =
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with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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as the radial and vertical pressure force accelerations of
the unperturbed parcel. Taking the determinant we ar-
rive at the dispersion equation
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where we have identified N2

z ⌘ (@zs)Az/� as the vertical
Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
where H = cs/

p
�⌦K is the scale height. In that limit,

we have 2
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In this case, the first term in Equation (17) is expected

to be of order ⌦4
K (before cancellations, if ! ⇠ ⌦K), while

the second term is of order zH/R2⌦4
K and the third of or-

der H2/R2⌦4
K . We therefore treat the second and third

terms are perturbations to the first. The unperturbed
vertical mode has frequencies
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which will permit small decay times only in the limit of
very large and small ⌧c. Accordingly, we perturb instead
the radial mode, setting
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where the assumption |�| ⌧ |R| will be checked a pos-

teriori.
Inserting Equation (19) into Equation (17) and keeping
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The mode is growing (positive Im �) as long as our ap-
proximation |�| ⌧ R holds and
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As long as the disk is thin, and we restrict ourselves to
moderate altitude, the approximation |�| ⌧ R is well
satisfied as
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and further N2
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R, N
2
z , this assumption is valid as

long as
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• and H2/R2 ⌧ 1 and zH/R2 ⌧ 1.

2.1. Vertically isothermal powerlaw disk

To better understand the growing mode condition
Equation (22) we consider a vertically isothermal power-
law disk (keeping terms up to second order in z/R, which
must be done to correctly determine N2
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c2s = c2s0

✓
R

R0

◆�q

, (24)

H2(R) =
c2s(R)

�⌦2
K(R)

, (25)

⇢(R, z) = ⇢0

✓
R

R0

◆�p

e
� z2

2H2(R) , (26)

p(R, z) =
cs(R)2

�
⇢(R, z). (27)

In general, we expect p 2 [1, 3] and q 2 [0, 1/2]. In such
a system, we have to lowest order in H/R, z/R:
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From Equation (32) we can see that the radial entropy
gradient in the midplane can be either positive or nega-
tive, but if it is positive, it will change sign at
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Combining Equations (28)–(31) we can calculate the
other term in Equation (22):

Az
2
z +AR

2
R =

H2⌦4
K

R


p+ q �

✓
3

2
+

q

2

◆
z2

H2

�
, (34)

which is very generally positive at the midplane and
changes sign at

zp
H

=


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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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1. INSTABILITY CRITERIA

The stability of a rotating stratified fluid (which allows
a steady state) can be considered by finding the lines of
constant entropy and constant angular momentum under
adiabatic transport (i.e. the line along which an adiabat-
ically displaced parcel of gas will orbit circularly). An
displaced parcel will then move buoyantly vertically to-
wards the line of constant entropy, and radially towards
the line of constant angular momentum. In general in a
protoplanetary disk these will both have positive slop in
the R–z plane. If the line of constant entropy is steeper
than that of constant angular momentum, the system is
unstable, and otherwise it is stable. Decades of study
has shown that protoplanetary disks are quite generally
stable.
Allowing for thermal relaxation adds consideration of

the line of constant angular momentum of fully thermally
relaxed fluid. However, these two lines of constant angu-
lar momentum cannot straddle the line of constant en-
tropy as displacement along the line of constant entropy
is both adiabatic and fully relaxed: the displaced parcel
cannot be both pushed radially inwards and outwards.
Allowing thermal relaxation therefore does not change
the stability of the disk.
Overstabilities (growing oscillations, for example grow-

ing vortices) are a di↵erent matter. In the adiabatic
limit, the pressure force is

F p = �1

⇢
rp / 1

p1/�
rp / rp1�� , (1)

so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
The full equations are then:
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
the full freedom of s.
We spatial displace a parcel of gas, originally at R =
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with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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z ⌘ R�3

0 @zj
2
is its vertical equiva-
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Allowing thermal relaxation therefore does not change
the stability of the disk.
Overstabilities (growing oscillations, for example grow-

ing vortices) are a di↵erent matter. In the adiabatic
limit, the pressure force is

F p = �1

⇢
rp / 1

p1/�
rp / rp1�� , (1)

so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
The full equations are then:
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
the full freedom of s.
We spatial displace a parcel of gas, originally at R =

R0, z = z0, s = s0 = s(R0, z0), with linearized parame-
ters
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with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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where we have subtracted the evolution equation of the

background (steady) state, 2
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epicyclic frequency, 2
z ⌘ R�3
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is its vertical equiva-

lent and all derivatives on the background state are taken
at (R0, z0).
The matrix corresponding to the above system of equa-
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The stability of a rotating stratified fluid (which allows
a steady state) can be considered by finding the lines of
constant entropy and constant angular momentum under
adiabatic transport (i.e. the line along which an adiabat-
ically displaced parcel of gas will orbit circularly). An
displaced parcel will then move buoyantly vertically to-
wards the line of constant entropy, and radially towards
the line of constant angular momentum. In general in a
protoplanetary disk these will both have positive slop in
the R–z plane. If the line of constant entropy is steeper
than that of constant angular momentum, the system is
unstable, and otherwise it is stable. Decades of study
has shown that protoplanetary disks are quite generally
stable.
Allowing for thermal relaxation adds consideration of
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lar momentum cannot straddle the line of constant en-
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as the radial and vertical pressure force accelerations of
the unperturbed parcel. Taking the determinant we ar-
rive at the dispersion equation
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where we have identified N2

z ⌘ (@zs)Az/� as the vertical
Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
where H = cs/

p
�⌦K is the scale height. In that limit,
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In this case, the first term in Equation (17) is expected

to be of order ⌦4
K (before cancellations, if ! ⇠ ⌦K), while

the second term is of order zH/R2⌦4
K and the third of or-

der H2/R2⌦4
K . We therefore treat the second and third

terms are perturbations to the first. The unperturbed
vertical mode has frequencies
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which will permit small decay times only in the limit of
very large and small ⌧c. Accordingly, we perturb instead
the radial mode, setting
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teriori.
Inserting Equation (19) into Equation (17) and keeping
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The mode is growing (positive Im �) as long as our ap-
proximation |�| ⌧ R holds and
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As long as the disk is thin, and we restrict ourselves to
moderate altitude, the approximation |�| ⌧ R is well
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and further N2
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2
z , this assumption is valid as

long as

• either |2
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• and H2/R2 ⌧ 1 and zH/R2 ⌧ 1.

2.1. Vertically isothermal powerlaw disk

To better understand the growing mode condition
Equation (22) we consider a vertically isothermal power-
law disk (keeping terms up to second order in z/R, which
must be done to correctly determine N2
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In general, we expect p 2 [1, 3] and q 2 [0, 1/2]. In such
a system, we have to lowest order in H/R, z/R:

2
R(R) = ⌦2

K(R), (28)

2
z(R) = �q

z

R
⌦2

K , (29)

Az =
z

H
H⌦2

K , (30)

AR =
H

R


(p+ q) �

✓
3

2
� q

2

◆
z2

H2

�
H⌦2

K , (31)

@s

@R
=

⇢
�q + (� � 1)


p �

✓
3

2
� q

2

◆
z2

H2

��
1

R
. (32)

From Equation (32) we can see that the radial entropy
gradient in the midplane can be either positive or nega-
tive, but if it is positive, it will change sign at
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Combining Equations (28)–(31) we can calculate the
other term in Equation (22):
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which is very generally positive at the midplane and
changes sign at

zp
H

=


2

✓
p+ q

3 + q

◆�1/2
. (35)

From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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1. INSTABILITY CRITERIA

The stability of a rotating stratified fluid (which allows
a steady state) can be considered by finding the lines of
constant entropy and constant angular momentum under
adiabatic transport (i.e. the line along which an adiabat-
ically displaced parcel of gas will orbit circularly). An
displaced parcel will then move buoyantly vertically to-
wards the line of constant entropy, and radially towards
the line of constant angular momentum. In general in a
protoplanetary disk these will both have positive slop in
the R–z plane. If the line of constant entropy is steeper
than that of constant angular momentum, the system is
unstable, and otherwise it is stable. Decades of study
has shown that protoplanetary disks are quite generally
stable.
Allowing for thermal relaxation adds consideration of

the line of constant angular momentum of fully thermally
relaxed fluid. However, these two lines of constant angu-
lar momentum cannot straddle the line of constant en-
tropy as displacement along the line of constant entropy
is both adiabatic and fully relaxed: the displaced parcel
cannot be both pushed radially inwards and outwards.
Allowing thermal relaxation therefore does not change
the stability of the disk.
Overstabilities (growing oscillations, for example grow-

ing vortices) are a di↵erent matter. In the adiabatic
limit, the pressure force is

F p = �1

⇢
rp / 1

p1/�
rp / rp1�� , (1)

so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
The full equations are then:
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
the full freedom of s.
We spatial displace a parcel of gas, originally at R =

R0, z = z0, s = s0 = s(R0, z0), with linearized parame-
ters

uR(t) = uRe
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with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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where we have subtracted the evolution equation of the

background (steady) state, 2
R ⌘ R�3

0 @Rj
2
is the radial

epicyclic frequency, 2
z ⌘ R�3

0 @zj
2
is its vertical equiva-

lent and all derivatives on the background state are taken
at (R0, z0).
The matrix corresponding to the above system of equa-

tions is
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unstable, and otherwise it is stable. Decades of study
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Allowing for thermal relaxation adds consideration of
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lar momentum cannot straddle the line of constant en-
tropy as displacement along the line of constant entropy
is both adiabatic and fully relaxed: the displaced parcel
cannot be both pushed radially inwards and outwards.
Allowing thermal relaxation therefore does not change
the stability of the disk.
Overstabilities (growing oscillations, for example grow-

ing vortices) are a di↵erent matter. In the adiabatic
limit, the pressure force is
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rp / 1
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so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
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spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
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ing vortices) are a di↵erent matter. In the adiabatic
limit, the pressure force is

F p = �1

⇢
rp / 1

p1/�
rp / rp1�� , (1)

so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
The full equations are then:
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
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with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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as the radial and vertical pressure force accelerations of
the unperturbed parcel. Taking the determinant we ar-
rive at the dispersion equation
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where we have identified N2

z ⌘ (@zs)Az/� as the vertical
Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
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K and the third of or-
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K . We therefore treat the second and third
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The mode is growing (positive Im �) as long as our ap-
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2.1. Vertically isothermal powerlaw disk

To better understand the growing mode condition
Equation (22) we consider a vertically isothermal power-
law disk (keeping terms up to second order in z/R, which
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From Equation (32) we can see that the radial entropy
gradient in the midplane can be either positive or nega-
tive, but if it is positive, it will change sign at
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Combining Equations (28)–(31) we can calculate the
other term in Equation (22):
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which is very generally positive at the midplane and
changes sign at

zp
H
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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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NOTES

Alexander Hubbard, Hubert Klahr

1. INSTABILITY CRITERIA

The stability of a rotating stratified fluid (which allows
a steady state) can be considered by finding the lines of
constant entropy and constant angular momentum under
adiabatic transport (i.e. the line along which an adiabat-
ically displaced parcel of gas will orbit circularly). An
displaced parcel will then move buoyantly vertically to-
wards the line of constant entropy, and radially towards
the line of constant angular momentum. In general in a
protoplanetary disk these will both have positive slop in
the R–z plane. If the line of constant entropy is steeper
than that of constant angular momentum, the system is
unstable, and otherwise it is stable. Decades of study
has shown that protoplanetary disks are quite generally
stable.
Allowing for thermal relaxation adds consideration of

the line of constant angular momentum of fully thermally
relaxed fluid. However, these two lines of constant angu-
lar momentum cannot straddle the line of constant en-
tropy as displacement along the line of constant entropy
is both adiabatic and fully relaxed: the displaced parcel
cannot be both pushed radially inwards and outwards.
Allowing thermal relaxation therefore does not change
the stability of the disk.
Overstabilities (growing oscillations, for example grow-

ing vortices) are a di↵erent matter. In the adiabatic
limit, the pressure force is

F p = �1

⇢
rp / 1

p1/�
rp / rp1�� , (1)

so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
The full equations are then:
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
the full freedom of s.
We spatial displace a parcel of gas, originally at R =

R0, z = z0, s = s0 = s(R0, z0), with linearized parame-
ters
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�i!t, (5)

R0(t) = R(t) � R0 =
uR(t)

�i!
= i

uR(t)

!
, (6)

uz(t) = uze
�i!t, (7)

z0(t) = z(t) � z0 =
uz(t)

�i!
= i

uz(t)

!
, (8)

s0(t) = s(t) � s(R(t), z(t)), (9)

⇢(t) = ⇢

✓
1 � s0

�

◆
, (10)

j = j0, (11)

with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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where we have subtracted the evolution equation of the

background (steady) state, 2
R ⌘ R�3

0 @Rj
2
is the radial

epicyclic frequency, 2
z ⌘ R�3

0 @zj
2
is its vertical equiva-

lent and all derivatives on the background state are taken
at (R0, z0).
The matrix corresponding to the above system of equa-

tions is
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so all the forces (gravity, centrifugal, pressure) are con-
servative. No overstabilities are allowed. However, if the
motion of a gas parcel is not adiabatic, then the pressure
force is no longer conservative. As we will show, this
allows for quite general overstabilities in protoplanetary
disks.

2. DISPERSION EQUATION

We consider a parcel analysis of an inviscid protoplane-
tary disk in the presence of cooling, under the assumption
of axisymmetry in cylindrical coordinates. The cooling
is approximated as a relaxation to the background state.
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where j is the specific orbital angular momentum, s ⌘
ln(p/⇢�) is the entropy and the spatial and temporal

dependencies have been omitted. This system of equa-
tions allows for a steady-state background solution with
uR = uz = 0 and arbitrary s(R, z). Note that treating
cooling are a di↵usive process, for example, will eliminate
the full freedom of s.
We spatial displace a parcel of gas, originally at R =

R0, z = z0, s = s0 = s(R0, z0), with linearized parame-
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with the perturbed entropy being calculated with re-
spect to the background entropy at the parcel’s posi-
tion s(R(t), z(t)) rather than with respect to s(R0, z0)
and the parcel assumed to instantaneously equilibrate its
pressure with its surrounding (high sound speed). The
linearized evolution equations for the parcel are then
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background (steady) state, 2
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as the radial and vertical pressure force accelerations of
the unperturbed parcel. Taking the determinant we ar-
rive at the dispersion equation

�
!2 � 2

R

�✓
!2 +

i!

⌧c
� N2

z

◆
� @s

@R

Az
2
z

�
� N2

R!
2 = 0,

(17)
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Brunt-Väisälä frequency and N2
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radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
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K . We therefore treat the second and third

terms are perturbations to the first. The unperturbed
vertical mode has frequencies
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which will permit small decay times only in the limit of
very large and small ⌧c. Accordingly, we perturb instead
the radial mode, setting

! = ±R + �±, (19)

where the assumption |�| ⌧ |R| will be checked a pos-

teriori.
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The mode is growing (positive Im �) as long as our ap-
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@Rs
�
Az

2
z +AR

2
R

�
< 0. (22)

As long as the disk is thin, and we restrict ourselves to
moderate altitude, the approximation |�| ⌧ R is well
satisfied as

@s

@R

Az
2
z/� +AR

2
R/�

4
R

⇠ zH

R2
+

H2

R2
, (23)
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• and H2/R2 ⌧ 1 and zH/R2 ⌧ 1.

2.1. Vertically isothermal powerlaw disk

To better understand the growing mode condition
Equation (22) we consider a vertically isothermal power-
law disk (keeping terms up to second order in z/R, which
must be done to correctly determine N2
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From Equation (32) we can see that the radial entropy
gradient in the midplane can be either positive or nega-
tive, but if it is positive, it will change sign at
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Combining Equations (28)–(31) we can calculate the
other term in Equation (22):
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which is very generally positive at the midplane and
changes sign at
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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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• Perturb around the radial epicyclic 
solution
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growth

• Instability criterion
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as the radial and vertical pressure force accelerations of
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where we have identified N2

z ⌘ (@zs)Az/� as the vertical
Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
where H = cs/

p
�⌦K is the scale height. In that limit,

we have 2
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K > 0 and further, 2
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R. We
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In this case, the first term in Equation (17) is expected

to be of order ⌦4
K (before cancellations, if ! ⇠ ⌦K), while

the second term is of order zH/R2⌦4
K and the third of or-

der H2/R2⌦4
K . We therefore treat the second and third

terms are perturbations to the first. The unperturbed
vertical mode has frequencies
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which will permit small decay times only in the limit of
very large and small ⌧c. Accordingly, we perturb instead
the radial mode, setting
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teriori.
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long as
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• and H2/R2 ⌧ 1 and zH/R2 ⌧ 1.

2.1. Vertically isothermal powerlaw disk

To better understand the growing mode condition
Equation (22) we consider a vertically isothermal power-
law disk (keeping terms up to second order in z/R, which
must be done to correctly determine N2
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From Equation (32) we can see that the radial entropy
gradient in the midplane can be either positive or nega-
tive, but if it is positive, it will change sign at
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Combining Equations (28)–(31) we can calculate the
other term in Equation (22):
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which is very generally positive at the midplane and
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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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as the radial and vertical pressure force accelerations of
the unperturbed parcel. Taking the determinant we ar-
rive at the dispersion equation
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where we have identified N2

z ⌘ (@zs)Az/� as the vertical
Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
where H = cs/

p
�⌦K is the scale height. In that limit,

we have 2
R ⇠ ⌦2

K > 0 and further, 2
z ⇠ (H/R)2

R. We
also have N2

z ⇠ (z/H)⌦2
K � |N2

R|.
In this case, the first term in Equation (17) is expected

to be of order ⌦4
K (before cancellations, if ! ⇠ ⌦K), while

the second term is of order zH/R2⌦4
K and the third of or-

der H2/R2⌦4
K . We therefore treat the second and third

terms are perturbations to the first. The unperturbed
vertical mode has frequencies
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which will permit small decay times only in the limit of
very large and small ⌧c. Accordingly, we perturb instead
the radial mode, setting

! = ±R + �±, (19)

where the assumption |�| ⌧ |R| will be checked a pos-

teriori.
Inserting Equation (19) into Equation (17) and keeping

only terms first order in �, we find
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The mode is growing (positive Im �) as long as our ap-
proximation |�| ⌧ R holds and
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As long as the disk is thin, and we restrict ourselves to
moderate altitude, the approximation |�| ⌧ R is well
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long as

• either |2
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• and H2/R2 ⌧ 1 and zH/R2 ⌧ 1.

2.1. Vertically isothermal powerlaw disk

To better understand the growing mode condition
Equation (22) we consider a vertically isothermal power-
law disk (keeping terms up to second order in z/R, which
must be done to correctly determine N2
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From Equation (32) we can see that the radial entropy
gradient in the midplane can be either positive or nega-
tive, but if it is positive, it will change sign at
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Combining Equations (28)–(31) we can calculate the
other term in Equation (22):
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which is very generally positive at the midplane and
changes sign at
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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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as the radial and vertical pressure force accelerations of
the unperturbed parcel. Taking the determinant we ar-
rive at the dispersion equation
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where we have identified N2

z ⌘ (@zs)Az/� as the vertical
Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
where H = cs/

p
�⌦K is the scale height. In that limit,

we have 2
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K > 0 and further, 2
z ⇠ (H/R)2

R. We
also have N2

z ⇠ (z/H)⌦2
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R|.
In this case, the first term in Equation (17) is expected

to be of order ⌦4
K (before cancellations, if ! ⇠ ⌦K), while

the second term is of order zH/R2⌦4
K and the third of or-

der H2/R2⌦4
K . We therefore treat the second and third

terms are perturbations to the first. The unperturbed
vertical mode has frequencies
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which will permit small decay times only in the limit of
very large and small ⌧c. Accordingly, we perturb instead
the radial mode, setting

! = ±R + �±, (19)

where the assumption |�| ⌧ |R| will be checked a pos-

teriori.
Inserting Equation (19) into Equation (17) and keeping

only terms first order in �, we find
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The mode is growing (positive Im �) as long as our ap-
proximation |�| ⌧ R holds and
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As long as the disk is thin, and we restrict ourselves to
moderate altitude, the approximation |�| ⌧ R is well
satisfied as
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• either |2
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• and H2/R2 ⌧ 1 and zH/R2 ⌧ 1.

2.1. Vertically isothermal powerlaw disk

To better understand the growing mode condition
Equation (22) we consider a vertically isothermal power-
law disk (keeping terms up to second order in z/R, which
must be done to correctly determine N2
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2
R(R) = ⌦2

K(R), (28)

2
z(R) = �q

z

R
⌦2

K , (29)

Az =
z

H
H⌦2

K , (30)

AR =
H

R


(p+ q) �

✓
3

2
� q

2

◆
z2

H2

�
H⌦2

K , (31)

@s

@R
=

⇢
�q + (� � 1)


p �

✓
3

2
� q

2

◆
z2

H2

��
1

R
. (32)

From Equation (32) we can see that the radial entropy
gradient in the midplane can be either positive or nega-
tive, but if it is positive, it will change sign at
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Combining Equations (28)–(31) we can calculate the
other term in Equation (22):
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which is very generally positive at the midplane and
changes sign at
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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.



Isothermal Disk

• Even if the radial entroy 
gradient is postive at the 
midplane, it will be 
negative at altitude

• But the radial pressure 
force also changes 
direction

2

as the radial and vertical pressure force accelerations of
the unperturbed parcel. Taking the determinant we ar-
rive at the dispersion equation
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where we have identified N2

z ⌘ (@zs)Az/� as the vertical
Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
So far the analysis has been general to a rotating in-

viscid system with thermal relaxation to the background
(steady) state. Rather than solve Equation (17) directly
we will first make the thin-disk approximation: H ⌧ R
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From the combination of Equations 22, 33 and 35 we
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can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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Brunt-Väisälä frequency and N2

R ⌘ (@Rs)AR/� as the
radial one.
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From Equation (32) we can see that the radial entropy
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From the combination of Equations 22, 33 and 35 we
can see that there are growing modes if

• @Rs(R, 0) < 0, i.e. a negative radial entropy gra-
dient at the midplane. This requires q > (� � 1)p,
either an unusually steep temperature profile or a
shallow density profile. In this case, the disk is
unstable for z < zp.

• @Rs(R, 0) > 0 and zs < zp. In this case for z 2
[zs, zp] the radial entropy gradient is negative while
the term in Equation (34) is positive. The existence
of this band in z requires 2(� � 1)p < 3�+(2� �)q
which is generally satisfied.
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Fig. 1.— Estimated vertical dependencies of Im � for several cool-
ing times ⌧c as calculated from Equation (23). Top panel: radially
increasing entropy at the midplane (reasonably canonical power
laws). Bottom panel: radially decreasing entropy at the midplane
(shallow density profile, steep temperature profile). The growth
rates peak for ⌧cR & 1.

In conclusion, a vertically isothermal disk is expected
to show growing modes, either for a slab that extends
through the midplane (@Rs(R, 0) < 0) or for two windows
at z ⇠ ±H. Does this fit with simulations?

2.2. Growth rates

We have performed our analysis under the assumption
that the growth rate of the overstability is slow (|�| ⌧
|R|). From Equation (23) we can see that if ⌧c ⇠ �1

R ⇠
⌦�1

K and NR ⌧ 2
R, then the growth rate is of order

Im � ⇠ (H/R)2⌦K . (36)

However, if @Rs(R, 0) > 0, then the overstable region is
only a narrow band in z, bounded by Im � = 0, so in
that case we do not expect to reach the estimate. In
Figure 1 we show the growth rate of the overstability
as a function of z/H for cases with both @Rs(R, 0) > 0

and @Rs(R, 0) < 0, across multiple cooling times. We
can see that Equation (36) overestimates the growth rate
from Equation (23), and that the expected growth rate
is significantly higher if @Rs(R, 0) < 0 than otherwise.
I can easily generate Fig 1 for di↵erent disk parame-

ters... what have you been using?

3. INTERPRETATION

Equation (21) makes clear that � / @Rs: the energy
source for the growing mode is the radial entropy gradi-
ent. If @Rs(R, 0) < 0, AR(R, 0) > 0, there is a growing
mode in the midplane. Simplifying Equation (14) for the
midplane, and using ! ' R we find

(�iR + 1/⌧c)s
0 = iR@RsR

0, (37)
which can be recast as

(s � s0) =

 
1 + iR⌧c

1 + [R⌧c]
2

!
(s � s0). (38)

From our time variation definition (Equation (5)) we can
see that the entropy of the parcel with respect to its
initial state lags that of gas through which is passes by
a phase factor 0  �  ⇡/2.
The interpretation of the instability is then straightfor-

ward: as the parcel resides inwards of its initial position it
gains entropy, so on the outwards leg of its epicyclic mo-
tion it is under-dense compared to adiabatic motion so it
feels the outwards directed pressure force more strongly.
Similarly, on the inwards leg it is colder and overdense
compared to adiabatic motion, so it feels the (still out-
wards directed) pressure force more strongly. This in-
terpretation also works for finite z0, although there the
radial density variation will generate vertical buoyancy
forces that tilt the radial epicyclic oscillations towards
the line of constant entropy.

4. CONCLUSIONS

We have shown that, even though protoplanetary disks
are quite generally hydrodynamically stable, radial en-
tropy gradients allows for very general overstabilities
that take the form of (tilted) vortices. These oversta-
bilities have long to very long growth times, so they will
not act in regions with stronger instabilities such as the
MRI, but they do allow for the generation of turbulence
and angular momentum transport in magnetically dead
zones, so long as overshooting turbulence does not dis-
rupt them.


