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Vortices in nature
✤ Well known in planetary atmospheres

3

Cyclones on Earth
Great red spot

✤ Generally associated with quasi 2D configuration and rotation/shear
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Vortices in accretion discs?

✤ Initially suggested by von Weizsäcker (1944) to explain planetary 
formation.

✤ Reintroduced by Barge & Sommeria (1995) : dust accumulation.
✤ In discs, only anticyclonic (counter rotating) vortices can survive.
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How do we generate vortices?
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Rossby wave instabilities

✤ Observed when a radial structure is imposed (e.g high density annulus).

✤ Instability saturation produces vortices on the radial structure
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Rossby wave instabilities in a numerical simulation
Li et al. (2001)

overdensity
Ω

Vortex (m=3)
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3D processes
✤ Off midplane generation (Barranco & Marcus 2005). Mechanism unknown.

✤ Spontaneous production in MRI turbulence (Fromang & Nelson 2005)

6
Density Vorticity
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Baroclinic instabilities

✤ Baroclinic instabilities are driven by the missalignement 
of isobar and isodensity contours:

✤ Well known in geophysics (even seen in labs!)
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Credit: Yakov Afanasyev & Peter Rhines
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Baroclinic instabilities in discs
✤ Baroclinic instabilities in discs are essentially driven by 

the radial entropy structure of the disc.

✤ 2D configuration

✤ Different from the geophysical case (3D)
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entropy gradient
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Baroclinic instabilities: an overview (1)

✤ Baroclinic instabilities are driven by the 
radial entropy structure of the disc.

✤ Initially suggested in global simulations 
by Klahr & Bodenheimer (2003). 
Many numerical problems (Boundary 
conditions, numerical convergence)

✤ Local linear and numerical studies 
(Johnson & Gammie 2005, 2006) did not 
find anything.
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No sh
ear

No shear

No shear

with shear

change, we could also drop the damping of the radial com-
ponent of the velocity close to radial boundaries. The den-
sity distribution again was ! / R!1 (constant ! " 300 g
cm!2), and the temperature distribution was T / R!1; thus,
we have a baroclinically unstable situation as in model 3,
which results from H=R ¼ 0:055. The model was first run
into a stable one-dimensional axisymmetric state, where the
residual velocities were less than 10!4 cm s!1. Without a
symmetry-breaking instability and turbulence generation,
this disk cannot evolve and would stay perfectly laminar
forever, as in the dead zone described byGammie (1996).

The initial density distribution was then perturbed by
random noise of amplitude only 0.1%. The initial state is
practically axisymmetric. Figure 19 illustrates the evolution
of the flow in two space dimensions, over the full 360$. After
the first orbit (30 yr at 10 AU; Fig. 19a), only little structure
has evolved, but with time, a prominent anticyclonic vortex
forms, which reflects the assumption that m ¼ 1 is the pre-
ferred mode. Intermittently, a second vortex also forms,
and we assume that their number is limited only by the nar-
rowness of our disk and a lack of matter. The vortex grows
in mass and propagates radially outward, possibly as a
result of the gradient of background vorticity and the fact

Fig. 17.—Model 5: quantities plotted have the samemeaning as those in Fig. 12. This calculation was run over 230 orbits.

Fig. 18.—Model 5: spectral density distribution of the velocities at the
midplane computed along the ’-direction and averaged over radius. The
slope for isotropic, incompressible turbulence (i.e., a Kolmogorov spec-
trum) is indicated by the dashed line, and the spectrum for two-dimensional
geostrophic flows by the dotted line.

886 KLAHR & BODENHEIMER Vol. 582
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Baroclinic instabilities: an overview (2)

10

2 ingredients missing:
-finite amplitude perturbations
-thermal diffusion/relaxation
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✤ Petersen et al. (2007) revived the idea, with anelastic spectral simulations 
showing vortex amplification.

✤ They also included a new ingredient: thermal diffusion.

Baroclinic instabilities: an overview (3)

11

Petersen et al. 2007
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The shearing box model

✤ Local approximation: 
✤ Neglect curvature effects
✤ Almost incompressible (incompressible approximation 

valid in first approximation)
✤ Have to include the radial stratification to take into account 

baroclinic effects (Boussinesq).

13
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(some) equations

✤ Incompressible equations in 2D (x,y)=(r,!)
✤ Stratification in the Boussinesq approximation
✤ Buoyancy frequency:

✤ In 2D, stratification is a source of vertical vorticity through the baroclinic term
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✤ Non axisymmetric temperature perturbations can locally produce vorticity
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Linear stability

✤ Dimensionless number comparing stratification and rotation 
(shear):

✤ The stability to axisymmetric disturbances is given by the 
Solberg-Hoïland criterion

✤ In discs,

15

✤ Radially stratified discs are linearly stable to axisymmetric disturbances

Ri =
N2

⌦2

Ri > �1

|Ri| . 10�2

Stability
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The baroclinic instability: vortex amplification

✤ Initial condition: box-centred Kida vortex
✤ Radial (x) stratification with N2<0
✤ Integrated for 20 orbits
✤ Vertical vorticity plot

16
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The effect of stratification

Vortex amplification is due to the stratification.
Requires N2<0 (or equivalently                                               )

17

(no stratification)

t=0.1 orbits t=10 orbits t=50 orbits
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The effect of the stratification (cont’d)

✤ Requires N2<0  (or equivalently                                             
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A nonlinear instability

The instability appears for finite amplitude disturbances.
Explains Johnson & Gammie (2005) negative result.
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✤ Influence of the amplitude of the initial perturbation

0 2000 4000 6000 8000 10000

10−3

10−2

10−1

t

<ω
2  / 

2 
>

 

 

Ap=0.2
Ap=0.4
Ap=0.6
Ap=0.8
Ap=1.0



Geoffroy Lesur ISPP Marseille 18 September 2012

The role of thermal diffusion

✤ Thermal diffusion (not too strong!) is required to get the instability. 
See also Petersen et al. (2007)
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✤ Enstrophy evolution as a function of the thermal diffusion parameter
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Phenomenological description

✤ A to B: The fluid particle is cooler and heavier than the surrounding gas. It is 
accelerated by gravity toward the star.

✤ B to C: Background temperature is constant. The particle is reheated by thermal 
diffusion.

✤ C to D: Fluid particle hotter and lighter than the background: outward acceleration.
✤ D to A: Particle cooled by thermal diffusion.

Fluid motion is amplified on the AB and CD branches.

21

A B

CD

A B

CD

Convectively unstable radial 
temperature gradient
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Summary

22

✤ This instability:
✤ produces and amplifies vortices in local disc models (shearing boxes)
✤ appears when N2<0 (when the temperature profile is steep enough)
✤ requires explicit thermal diffusion
✤ is nonlinear (or subcritical)
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Generation of density waves (single vortex)

24

✤ Linear stationary waves are described by a parabolic cylinder equation

✤ The vortex produces a «tail», connected to the wave region through the sonic line

Sonic line Sonic line

Wave
region

Wave
region

Evanescent
region

x

y

Wave emission by a vortex

Research notes

Geoffroy Lesur

DAMTP

March 15, 2010

1 Equation

We start with Narayan et al. (1987) equation:

d2v

dx2
+

[σ2 − κ2

c2
− k2

]

v = 0 (1)

where σ = Sxk and S = 3/2Ω is the mean shear. This can be reduced into:

d2v

dx2
+

[S2k2x2

c2
−

κ2

c2
− k2

]

v = 0 (2)

We then define

x2
0 =

κ2 + k2c2

S2k2
(3)

α2 =
(κ2 + k2c2)2

c2S2k2
(4)

w =
x

x0

, (5)

so that the equation becomes
d2v

dw2
+ α2(w2 − 1)v = 0 (6)

At large k, the turning point w = 1 is located at x = x0 " c/S which corresponds to the sonic
point, as expected.

1

where � =
3
2
⌦xk

Σ

x

Vx
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Compressibility, waves and transport

25

✤ In fully compressible simulations, 
vortices produce density waves 
(see also Johnson & Gammie 2005 ;
Bodo et al 2005, 2007 ; 
Heinemann & Papaloizou 2009a,b).

vorticity density

Geoffroy Lesur and John C. B. Papaloizou: The subcritical baroclinic instability in local accretion disc models 9

Fig. 12. Vorticity map (left) and surface density map (right) for the large box simulation with applied viscosity andA = 0.5 at t=190.
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Fig. 13. Time history of the running means of the the spatially averaged
value of α for the small box (lower curve) and large box (upper curve)
simulations with applied viscosity and with A = 0.5 and A = 0.25
respectively.

with and without applied viscosity are shown. These lead to so-
lutions for which anticyclonic vortices are sustained for long
times. The case with no viscosity is more active as expected but
otherwise looks similar to the case with applied viscosity. By
contrast when the amplitude of the initial perturbation is reduced
to A = 0.025 no sustained vortices are seen. This demonstrates
that our numerical setup is not subject to any linear instability,
such as Rossby wave instabilities (Lovelace et al. 1999). The en-
strophy attains a low level in the case with no applied viscosity
which is a consequence of a long wavelength linear axisymmet-
ric disturbance that shows only very weak decay provided by

numerical viscosity in this run. Fig. 10 shows a vorticity map for
the small box simulation with applied viscosity and A = 0.25.
Anticylconic vortices are clearly seen in this case supporting the
finding from the incompressible runs that a finite amplitude ini-
tial kick is required to generate them.

The time history of the evolution of the enstrophy for large
box simulations with A = 0.5 with and without applied viscos-
ity is shown in Fig. 11. Corresponding vorticity and surface den-
sity maps for the case with applied viscosity are shown in Fig.
12. Again the inviscid case is more active but nonetheless the
corresponding maps look very similar. In these cases the anticy-
clonic vortices are present as in the small box case but there is in-
creased activity from density waves as seen in the surface density
maps. These waves could be generated by a process similar to the
swing amplifier with vorticity source described by Heinemann
& Papaloizou (2009a,b), although the structures we observe do
not strictly correspond to a small scale turbulent flow. The den-
sity waves are associated with some outward angular momen-
tum transport. However, the value of α measured from the vol-
ume average of the Reynolds stress is always highly fluctuating.
Accordingly we plot running means as a function of time for the
small box and large box with applied viscosity in Fig. 13. In the
small box case there is a small residual time average ∼ 10−4 but
in the large box this increases to ∼ 3 × 10−3. This is clearly a
consequence of the fact that the small box is close to the incom-
pressible regime, whereas the large box being effectively larger
than a scale height in radial width allows the vortices to become
large enough to become significantly more effective at exciting
density waves.

✤ Density waves transport angular 
momentum outward with "~10-3

<!
>
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Waves and vortex migration

26

✤ The Baroclinic instability still work in global simulations
✤ Asymmetric wave excitation
✤ Vortex migration ! (See Pardekooper’s talk)
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Vortex stability: the Kida vortex

✤ Kida  vortex defined my a vorticity 
patch ωv.

✤ Inside the vortex core, streamlines 
are elliptical

✤ Outside of the core, streamlines are 
closed, but not elliptical

a b

x

y

� = a/b

x

y
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Kida Vortex (cont’d) 

✤ Inside the vortex core, the 2D velocity reads

✤ Or in simplified version

✤ Describe 3D perturbations inside the core:

✤ Analysis valid only inside the vortex core!

2 G. Lesur and J. C. B. Papaloizou: Stability of Elliptical Vortices

It is often assumed that these vortices are unstable be-
cause of the elliptical instability. The elliptical instability
is a parametric instability appearing when a multiple of
the vortex turnover frequency matches an inertial wave
frequency, leading to a positive resonance. It is observed
when the backgound flow follows closed streamlines, and
being localized on individual streamlines is a local insta-
bility (in particular it doesn’t need to involve the vor-
tex boundaries). This instability was first found numeri-
cally by Pierrehumbert (1986) and described using Craik &
Criminale (1986) solutions by Bayly (1986) for pure ellip-
tical flows. The rotating case was studied by Craik (1989),
who showed that anticyclonic elliptical flows can be sta-
ble for some rotation rates. Interested readers may consult
Kerswell (2002) for a more extensive discussion of the el-
liptical instability and its development in fluid mechanics.

In the present paper, we investigate the elliptical in-
stability in the context of accretion disc vortices. We first
present a steady 2D vortex model, which is a non-linear
solution of the local disc equations. We then present the
linearised equations governing 3D perturbations inside the
vortex. A criterion for the instability is derived from these
equations and a physical understanding of the mechanism
responsible for the instability is provided. We briefly ex-
tend these results to a simplified stratified case, and we
compare our findings to fully non-linear simulations of ac-
cretion discs vortices. Finally, we provide a discussion and
a comparison with previous work.

2. Local model of an elliptical vortex.

2.1. Shearing-sheet model

In the following, we will assume a local model for the accre-
tion disc, following the shearing-sheet approximation. The
reader may consult Hawley et al. (1995), Balbus (2003) and
Regev & Umurhan (2008) for an extensive discussion of the
properties and limitations of this model. As a simplification,
we will assume the flow is incompressible, consistently with
the small shearing box model (Regev & Umurhan 2008).
The shearing box equations are found by considering a
Cartesian box centred at r = R0, rotating with the disc
at angular velocity Ω = Ω(R0). We define R0φ → x and
r − R0 → −y for consistency with the standard notation
for plane Couette flows (e.g. Drazin & Reid 1981). Note
that this definition differs from the standard notation used
in shearing boxes (Hawley et al. 1995) with x → −ySB,
y → xSB and z → zSB. In this rotating frame, one obtains
the following set of governing equations

∂tu + ∇ · (u ⊗ u) = −∇Π− 2Ω × u + 2ΩSyey, (1)

∇ · u = 0. (2)

In these equations, we have defined the mean shear S =
−r∂rΩ, which is set to S = (3/2)Ω for a Keplerian disc.
The generalised pressure Π = P/ρ0 is calculated solving a
Poisson equation with the incompressibility condition. One
can check easely that the velocity field u = Syex is a steady
solution of these equations.

2.2. The Kida (1981) solution

We want to study the stability of a steady elliptical vortex
embedded in the sheared flow described in the previous

subsection. Since we are looking for 2D solutions in the
(x, y) plane, we can omit the Coriolis force as it will only
change the pressure distribution. We define this vortex by
an elliptical patch of constant vorticity ωt = −S + ωv (the
“core”) where −S is the background flow vorticity and ωv

is the vorticity of the vortex itself. Outside of this core, the
vorticity is assumed to be ωt = −S, extending to infinity.
According to Kida (1981) (Eq. 2.9), such a vortex is steady
if the semi-major axis is aligned with x and if its vorticity
satisfies

ωv

S
= −

1

χ

(χ + 1

χ − 1

)

, (3)

where we have defined the vortex aspect-ratio χ = a/b, a
and b being respectively the vortex semi-major and semi-
minor axis. One deduces from this result that only anticy-
clonic vortices (Ω and ωv having opposite sign) are stable
in Keplerian flows. Since this solution is steady, no stream-
line goes through the core boundaries, and the streamlines
inside the core have to be elliptical, with the same aspect-
ratio as the vortex core.

Thanks to this property, we can write the velocity field
in the vortex core, assuming it’s centered on x = y = 0, as

u0
x = S

1

χ − 1
χy, (4)

u0
y = −S

1

(χ − 1)

1

χ
x. (5)

This solution can be written in the simpler form

u0
i = SAijxj , (6)

defining

A =
1

χ − 1





0 χ 0
−χ−1 0 0

0 0 0



 . (7)

2.3. Explicit solution

A complete solution for the velocity field can be found
defining the streamfunction ψ(x, y) so that ux = −∂yψ and
uy = ∂xψ. This streamfunction satisfies:

∆ψ =

{

−S + ων inside the core,
−S outside. (8)

One solves these equations in elliptical coordinates, defining
(µ, ν) by

x = f cosh(µ) cos(ν), (9)

y = f sinh(µ) sin(ν), (10)

with f = a
√

(χ2 − 1)/χ2. In these coordinates, the core
boundary is found at µ = µ0 with tanh(µ0) = χ−1.
Requiring that ψ and ∂µψ are continuous at µ0, one finds
the following expressions for ψ:

ψi = −
Sf2

2(χ − 1)

(

χ−1 cosh2(µ) cos2(ν)

+χ sinh2(µ) sin2(ν)
)

, (11)
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the following expressions for ψ:

ψi = −
Sf2
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(

χ−1 cosh2(µ) cos2(ν)

+χ sinh2(µ) sin2(ν)
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It is often assumed that these vortices are unstable be-
cause of the elliptical instability. The elliptical instability
is a parametric instability appearing when a multiple of
the vortex turnover frequency matches an inertial wave
frequency, leading to a positive resonance. It is observed
when the backgound flow follows closed streamlines, and
being localized on individual streamlines is a local insta-
bility (in particular it doesn’t need to involve the vor-
tex boundaries). This instability was first found numeri-
cally by Pierrehumbert (1986) and described using Craik &
Criminale (1986) solutions by Bayly (1986) for pure ellip-
tical flows. The rotating case was studied by Craik (1989),
who showed that anticyclonic elliptical flows can be sta-
ble for some rotation rates. Interested readers may consult
Kerswell (2002) for a more extensive discussion of the el-
liptical instability and its development in fluid mechanics.

In the present paper, we investigate the elliptical in-
stability in the context of accretion disc vortices. We first
present a steady 2D vortex model, which is a non-linear
solution of the local disc equations. We then present the
linearised equations governing 3D perturbations inside the
vortex. A criterion for the instability is derived from these
equations and a physical understanding of the mechanism
responsible for the instability is provided. We briefly ex-
tend these results to a simplified stratified case, and we
compare our findings to fully non-linear simulations of ac-
cretion discs vortices. Finally, we provide a discussion and
a comparison with previous work.

2. Local model of an elliptical vortex.

2.1. Shearing-sheet model

In the following, we will assume a local model for the accre-
tion disc, following the shearing-sheet approximation. The
reader may consult Hawley et al. (1995), Balbus (2003) and
Regev & Umurhan (2008) for an extensive discussion of the
properties and limitations of this model. As a simplification,
we will assume the flow is incompressible, consistently with
the small shearing box model (Regev & Umurhan 2008).
The shearing box equations are found by considering a
Cartesian box centred at r = R0, rotating with the disc
at angular velocity Ω = Ω(R0). We define R0φ → x and
r − R0 → −y for consistency with the standard notation
for plane Couette flows (e.g. Drazin & Reid 1981). Note
that this definition differs from the standard notation used
in shearing boxes (Hawley et al. 1995) with x → −ySB,
y → xSB and z → zSB. In this rotating frame, one obtains
the following set of governing equations

∂tu + ∇ · (u ⊗ u) = −∇Π− 2Ω × u + 2ΩSyey, (1)

∇ · u = 0. (2)

In these equations, we have defined the mean shear S =
−r∂rΩ, which is set to S = (3/2)Ω for a Keplerian disc.
The generalised pressure Π = P/ρ0 is calculated solving a
Poisson equation with the incompressibility condition. One
can check easely that the velocity field u = Syex is a steady
solution of these equations.

2.2. The Kida (1981) solution

We want to study the stability of a steady elliptical vortex
embedded in the sheared flow described in the previous

subsection. Since we are looking for 2D solutions in the
(x, y) plane, we can omit the Coriolis force as it will only
change the pressure distribution. We define this vortex by
an elliptical patch of constant vorticity ωt = −S + ωv (the
“core”) where −S is the background flow vorticity and ωv

is the vorticity of the vortex itself. Outside of this core, the
vorticity is assumed to be ωt = −S, extending to infinity.
According to Kida (1981) (Eq. 2.9), such a vortex is steady
if the semi-major axis is aligned with x and if its vorticity
satisfies

ωv
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= −
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(χ + 1

χ − 1

)

, (3)

where we have defined the vortex aspect-ratio χ = a/b, a
and b being respectively the vortex semi-major and semi-
minor axis. One deduces from this result that only anticy-
clonic vortices (Ω and ωv having opposite sign) are stable
in Keplerian flows. Since this solution is steady, no stream-
line goes through the core boundaries, and the streamlines
inside the core have to be elliptical, with the same aspect-
ratio as the vortex core.

Thanks to this property, we can write the velocity field
in the vortex core, assuming it’s centered on x = y = 0, as
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u0
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χ
x. (5)

This solution can be written in the simpler form

u0
i = SAijxj , (6)

defining

A =
1

χ − 1
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0 0 0



 . (7)

2.3. Explicit solution

A complete solution for the velocity field can be found
defining the streamfunction ψ(x, y) so that ux = −∂yψ and
uy = ∂xψ. This streamfunction satisfies:

∆ψ =

{

−S + ων inside the core,
−S outside. (8)

One solves these equations in elliptical coordinates, defining
(µ, ν) by

x = f cosh(µ) cos(ν), (9)

y = f sinh(µ) sin(ν), (10)

with f = a
√

(χ2 − 1)/χ2. In these coordinates, the core
boundary is found at µ = µ0 with tanh(µ0) = χ−1.
Requiring that ψ and ∂µψ are continuous at µ0, one finds
the following expressions for ψ:

ψi = −
Sf2
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(
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+χ sinh2(µ) sin2(ν)
)

, (11)
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defining the streamfunction ψ(x, y) so that ux = −∂yψ and
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x = f cosh(µ) cos(ν), (9)
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with f = a
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boundary is found at µ = µ0 with tanh(µ0) = χ−1.
Requiring that ψ and ∂µψ are continuous at µ0, one finds
the following expressions for ψ:

ψi = −
Sf2

2(χ − 1)

(

χ−1 cosh2(µ) cos2(ν)

+χ sinh2(µ) sin2(ν)
)

, (11)

�tv = �⌅P � u0 ·⌅v � v ·⌅u0 � 2�⇤ v
⌅ · v = 0

28



Geoffroy Lesur ISPP Marseille 18 September 2012

Evolution of 3D perturbations
✤ Fourier decomposition using time dependent wave-vectors:

✤ Leading to:

✤ Solution for k(t):

✤ Final equation (similar to Bayly 1986):

with                        and

✤ Stability properties do not depend on |k|, but just on its direction !

v = v(t) exp(ik(t) · x)
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Fig. 1. Vortex solution streamlines in a sheared flow with χ = 3.
As expected, inside the vortex (delimited by the blue bold line)
the streamlines are elliptical, with the same aspect ratio as the
vortex itself.

ψo = −
Sf2

4(χ − 1)2

[

1 + 2(µ − µ0)

+2(χ− 1)2 sinh2(µ) sin2(ν)

+
χ − 1

χ + 1
exp[−2(µ − µ0)] cos(2ν)

]

, (12)

where the subscripts i and o stand for inside and outside
the core.

As expected, the inner solution reproduces the ellipti-
cal flow described in the previous subsection (Eqns. 4—5).
In the outer solution, one recognises the background shear
(3rd term), which dominates for large µ. Moreover, this
solution exhibits a linear term in µ corresponding to the
long-range perturbation of the vortex. In cartesian coordi-
nates, this linear dependance translates into a logarithmic
tail for ψ(x, y), showing that the vortex presence can be
felt far from the core. As we will see in section 5 below, this
property leads to numerical artefacts when one tries to fit
this solution in a finite-size box. For completeness, we show
in Fig. 1 the streamlines obtained from solution (11)—(12).
As expected, the streamlines inside the core are ellipses of
constant aspect ratio χ. Outside the core, one still finds
closed streamlines but with a much more elongated struc-
ture.

2.4. Perturbation equations

In the following, we concentrate on the evolution of pertur-
bations in the vortex core, assuming the latter is infinite.
This corresponds to a limit in which the perturbations are
small compared to the typical horizontal size of the core.
To study the evolution of 3D perturbations in a 2D ellip-
tical flow, we write the total velocity field as u = u0 + v

where v is supposed to have an infinitely small amplitude.
Following Kelvin (1880) and Craik & Criminale (1986), we
use a time explicit Fourier decomposition for the perturba-
tion v = v(t) exp(ik(t) · x). Plugging this solution in (1)
leads at first order to:

v̇i + ixkvi(k̇k + SkjAjk) = −ikiΠ − SvjAij

−2εijkΩjvk (13)

kjvj = 0 (14)

where we have included the tidal term of (1) in Π. To satisfy
(13) for any xk, one has to solve:

k̇k + SkjAjk = 0, (15)

which leads to:

k(t) = k0

(

sin(θ) cos
[

φ(t)
]

ex

−χ sin(θ) sin
[

φ(t)
]

ey

+ cos(θ)ez

)

(16)

with φ(t) = S/(χ− 1)(t− t0). Therefore, the perturbations
will have a rotating wavevector with a turnover time equal
to the vortex turnover time T = 2π(χ−1)/S. We also note
that the rotating wavevector will involve smaller structures
in the y direction. According to this result, the horizontal
aspect ratio of the perturbation wavevector is equal to that
of the vortex (χ).

We can then simplify (13) eliminating the pressure,
which leads to the final system

dvi

dφ
=

[(2kikj

k2
− δij

)

Ājm + 2
(kikj

k2
− δij

)

R̄jm

]

vm, (17)

where Ā = (χ−1)A and R̄jm = (χ−1)εjlmΩl/S. Plugging
solution (16) in this equation leads to a Floquet problem
for v, as already pointed out by Bayly (1986). Interestingly,
the Floquet problem doesn’t depend on the norm of the
wavevector k ≡ k0, but just on its direction. Therefore, this
problem is scale-independant, at least in the inviscid limit.
The solution to this problem is known to be a superposition
of Floquet modes written

v = exp(γt)f [φ(t)], (18)

where f is periodic with period 2π. To determine the
Floquet exponents γ, we compute the eigenvalues exp(γT )
of the matrix M(2π) where M(φ) satisfies the generalised
equation

dMin

dφ
=

[(2kikj

k2
−δij

)

Ājm +2
(kikj

k2
−δij

)

R̄jm

]

Mmn,(19)

with the initial condition

Mij(0) = δij . (20)

A numerical approach is required to solve this problem in
most cases. However, some limits can be understood using
analytical approaches, as we will see in the next section.

3. The elliptical instability

3.1. Horizontal instability

It is possible to derive an analytical criterion for the insta-
bility in the limit k = kzez. In this limit, vz = 0 and (17)
is reduced to

dvx

dφ
=

[

− χ +
2Ω

S
(χ − 1)

]

vy, (21)

dvy

dφ
=

[ 1

χ
−

2Ω

S
(χ − 1)

]

vx. (22)

This system describes horizontal epicyclic oscillations with
frequency

κ2 = S2
(

R −
χ

χ − 1

)(

R −
1

χ(χ − 1)

)

, (23)

having defined the rotation number as R = 2Ω/S. In the
limit χ → ∞ where the vortex is infinitely weak, we find
the classical epicyclic frequency κ2 = 2Ω(2Ω − S), which

�(t) =
S

⇥� 1
(t� t0)with a turnover angle

k(t) = k0

�
sin(�) cos[⇥(t)]ex � ⇤ sin(�) sin[⇥(t)]ey + cos �ez

⇥
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Fig. 1. Vortex solution streamlines in a sheared flow with χ = 3.
As expected, inside the vortex (delimited by the blue bold line)
the streamlines are elliptical, with the same aspect ratio as the
vortex itself.
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the core.
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(3rd term), which dominates for large µ. Moreover, this
solution exhibits a linear term in µ corresponding to the
long-range perturbation of the vortex. In cartesian coordi-
nates, this linear dependance translates into a logarithmic
tail for ψ(x, y), showing that the vortex presence can be
felt far from the core. As we will see in section 5 below, this
property leads to numerical artefacts when one tries to fit
this solution in a finite-size box. For completeness, we show
in Fig. 1 the streamlines obtained from solution (11)—(12).
As expected, the streamlines inside the core are ellipses of
constant aspect ratio χ. Outside the core, one still finds
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ture.
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It is possible to derive an analytical criterion for the insta-
bility in the limit k = kzez. In this limit, vz = 0 and (17)
is reduced to

dvx

dφ
=

[

− χ +
2Ω

S
(χ − 1)

]

vy, (21)

dvy

dφ
=

[ 1

χ
−

2Ω

S
(χ − 1)

]

vx. (22)

This system describes horizontal epicyclic oscillations with
frequency

κ2 = S2
(

R −
χ

χ − 1

)(

R −
1

χ(χ − 1)

)

, (23)

having defined the rotation number as R = 2Ω/S. In the
limit χ → ∞ where the vortex is infinitely weak, we find
the classical epicyclic frequency κ2 = 2Ω(2Ω − S), which
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Fig. 1. Vortex solution streamlines in a sheared flow with χ = 3.
As expected, inside the vortex (delimited by the blue bold line)
the streamlines are elliptical, with the same aspect ratio as the
vortex itself.

ψo = −
Sf2

4(χ − 1)2

[

1 + 2(µ − µ0)

+2(χ− 1)2 sinh2(µ) sin2(ν)

+
χ − 1

χ + 1
exp[−2(µ − µ0)] cos(2ν)

]

, (12)

where the subscripts i and o stand for inside and outside
the core.

As expected, the inner solution reproduces the ellipti-
cal flow described in the previous subsection (Eqns. 4—5).
In the outer solution, one recognises the background shear
(3rd term), which dominates for large µ. Moreover, this
solution exhibits a linear term in µ corresponding to the
long-range perturbation of the vortex. In cartesian coordi-
nates, this linear dependance translates into a logarithmic
tail for ψ(x, y), showing that the vortex presence can be
felt far from the core. As we will see in section 5 below, this
property leads to numerical artefacts when one tries to fit
this solution in a finite-size box. For completeness, we show
in Fig. 1 the streamlines obtained from solution (11)—(12).
As expected, the streamlines inside the core are ellipses of
constant aspect ratio χ. Outside the core, one still finds
closed streamlines but with a much more elongated struc-
ture.

2.4. Perturbation equations

In the following, we concentrate on the evolution of pertur-
bations in the vortex core, assuming the latter is infinite.
This corresponds to a limit in which the perturbations are
small compared to the typical horizontal size of the core.
To study the evolution of 3D perturbations in a 2D ellip-
tical flow, we write the total velocity field as u = u0 + v

where v is supposed to have an infinitely small amplitude.
Following Kelvin (1880) and Craik & Criminale (1986), we
use a time explicit Fourier decomposition for the perturba-
tion v = v(t) exp(ik(t) · x). Plugging this solution in (1)
leads at first order to:

v̇i + ixkvi(k̇k + SkjAjk) = −ikiΠ − SvjAij

−2εijkΩjvk (13)

kjvj = 0 (14)

where we have included the tidal term of (1) in Π. To satisfy
(13) for any xk, one has to solve:

k̇k + SkjAjk = 0, (15)

which leads to:

k(t) = k0

(

sin(θ) cos
[

φ(t)
]

ex

−χ sin(θ) sin
[

φ(t)
]

ey

+ cos(θ)ez

)

(16)

with φ(t) = S/(χ− 1)(t− t0). Therefore, the perturbations
will have a rotating wavevector with a turnover time equal
to the vortex turnover time T = 2π(χ−1)/S. We also note
that the rotating wavevector will involve smaller structures
in the y direction. According to this result, the horizontal
aspect ratio of the perturbation wavevector is equal to that
of the vortex (χ).

We can then simplify (13) eliminating the pressure,
which leads to the final system

dvi

dφ
=

[(2kikj

k2
− δij

)

Ājm + 2
(kikj

k2
− δij

)

R̄jm

]

vm, (17)

where Ā = (χ−1)A and R̄jm = (χ−1)εjlmΩl/S. Plugging
solution (16) in this equation leads to a Floquet problem
for v, as already pointed out by Bayly (1986). Interestingly,
the Floquet problem doesn’t depend on the norm of the
wavevector k ≡ k0, but just on its direction. Therefore, this
problem is scale-independant, at least in the inviscid limit.
The solution to this problem is known to be a superposition
of Floquet modes written

v = exp(γt)f [φ(t)], (18)

where f is periodic with period 2π. To determine the
Floquet exponents γ, we compute the eigenvalues exp(γT )
of the matrix M(2π) where M(φ) satisfies the generalised
equation

dMin

dφ
=

[(2kikj

k2
−δij

)

Ājm +2
(kikj

k2
−δij

)

R̄jm

]

Mmn,(19)

with the initial condition

Mij(0) = δij . (20)

A numerical approach is required to solve this problem in
most cases. However, some limits can be understood using
analytical approaches, as we will see in the next section.

3. The elliptical instability

3.1. Horizontal instability

It is possible to derive an analytical criterion for the insta-
bility in the limit k = kzez. In this limit, vz = 0 and (17)
is reduced to

dvx

dφ
=

[

− χ +
2Ω

S
(χ − 1)

]

vy, (21)

dvy

dφ
=

[ 1

χ
−

2Ω

S
(χ − 1)

]

vx. (22)

This system describes horizontal epicyclic oscillations with
frequency

κ2 = S2
(

R −
χ

χ − 1

)(

R −
1

χ(χ − 1)

)

, (23)

having defined the rotation number as R = 2Ω/S. In the
limit χ → ∞ where the vortex is infinitely weak, we find
the classical epicyclic frequency κ2 = 2Ω(2Ω − S), which
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Stability analysis

✤ Weak vortices always unstable with small growth rates
✤ Strong horizontal instability for 3/2<χ<4
✤ No instability (?) for 4<χ<5.9
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Elliptical instability simulations

✤ Instability localised in the core for χ=3 
and χ=11

✤ Instability localised outside of the core 
for χ=5.5

✤ Growth rate comparable to linear 
theory

✤ Instability for χ=5.5 can be explained 
by a resonance outside of the vortex 
core
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Phenomenological argument
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✤ Two characteristic frequencies in 3D vortices:
✤ Turnover frequency of closed streamlines "#
✤ Frequency of local inertial modes (modified epicyclic frequency) κL

✤ An elliptic instability exists when a resonance occurs on one streamline:

L = n !⌧ where L = max

L
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3D instabilities and the SBI
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✤ 3D growth rates depend on the vortex aspect 
ratio $=a/b.
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Elliptical instability growth rate in a Kida 
vortex
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b
✤ The baroclinic instability amplifies the vortex
✤ $ decreases with time
✤ At some point, 3D instabilities will be dominant...
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3D instabilities and the SBI
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Fig. 17. Vorticity map from a simulation starting with a 2D Kida vortex plus a weak 3D noise. We show a snapshot at t 660 (left), t 750

Time history of the maxima of the 3 components of the velocity
3D noise. Once the SBI has formed vor-

nd balance
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3D instabilities and the SBI (cont’d)
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Self-sustained turbulent vortices
SNOOPY (1024 x 512 x 128)

After some time, a quasi-equilibrium is reached...
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Dust accumulation in turbulent vortices
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Conclusions
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✤ A «steep» temperature profile will generate vortices everywhere in a disc.
✤ Vortices produce waves which

✤ transport angular momentum
✤ generate vortex migration

✤ Open questions:
✤ Magnetic fields? (magneto-elliptic instabilities, MRI turbulence) cf W. 

Lyra talk
✤ 3D circulation? cf H. Méheut talk
✤ Temperature profile in the disc? cf H. Klahr talk

efficient Numerical 
tools required



Thank you


