The baroclinic instability in accretion discs Mechanism and secondary instabilities

Geoffroy Lesur
IPAG (Grenoble)
John Papaloizou
Sijme-Jan Paardekooper

Giant vortex in Naruto straight (Japan)

Outline

* A brief introduction
* Vortices in accretion discs?
* Planetary formation and transport
* The baroclinic instability in 2D
* Shearing box model
* Instability main properties
* Phenomenological description
* The instability in accretion discs
* Compressibility
* (3D stability)
- Conclusions

Vortices in nature

* Well known in planetary atmospheres

Cyclones on Earth

Great red spot

* Generally associated with quasi 2D configuration and rotation/shear

Vortices in accretion discs?

* Initially suggested by von Weizsäcker (1944) to explain planetary formation.
* Reintroduced by Barge \& Sommeria (1995) : dust accumulation.
* In discs, only anticyclonic (counter rotating) vortices can survive.

How do we generate vortices?

Rossby wave instabilities

* Observed when a radial structure is imposed (e.g high density annulus).

* Instability saturation produces vortices on the radial structure

Rossby wave instabilities in a numerical simulation
Li et al. (2001)

3D processes

* Off midplane generation (Barranco \& Marcus 2005). Mechanism unknown.

* Spontaneous production in MRI turbulence (Fromang \& Nelson 2005)

Baroclinic instabilities

* Baroclinic instabilities are driven by the missalignement of isobar and isodensity contours: $\nabla P \times \nabla \rho$
* Well known in geophysics (even seen in labs!)

Credit: Yakov Afanasyev \& Peter Rhines

Baroclinic instabilities in discs

* Baroclinic instabilities in discs are essentially driven by the radial entropy structure of the disc.
* 2D configuration
* Different from the geophysical case (3D)
entropy gradient

Baroclinic instabilities: an overview (1)

* Baroclinic instabilities are driven by the radial entropy structure of the disc.
* Initially suggested in global simulations by Klahr \& Bodenheimer (2003).
Many numerical problems (Boundary conditions, numerical convergence)
* Local linear and numerical studies (Johnson \& Gammie 2005, 2006) did not find anything.

Baroclinic instabilities: an overview (2)

The Astrophysical. Journal., 636:63-74, 2006 January 1
(5)
© 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

NONLINEAR STABILITY OF THIN, RADIALLY STRATIFIED DISKS

Bryan M. Johnson and Charles F. Gammie
Center for Theoretical Astrophysics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801
Received 2005 Jine 29; accepted 2005 September 9

ABSTRACT

We perform local numerical experiments to investigate the nonlinear stability of thin, radially stratified disks. We demonstrate the nresence of radial convective instahility when the disk is nearly in uniform rotation and show that the net angular momentum transport is slightly inward, consistent with previous investigations of vertical convection. 2 ingredients missing:

-finite amplitude perturbations -thermal diffusion/relaxation

ward. in many disks, this outward anguiar momentum transport is likely mediated internally by magnetohydrodynamic (MHD) turbulence driven by the magnetorotational instability (MRI; see Balbus \& Hawley 1998). A key feature of this transport mechanism is that it arises from a local shear instability and is therefore very robust. In addition, MHD turbulence transports angular momentum outward; some other forms of turbulence, such as

In a companion paper (Johnson \& Gammie 2005, hereafter
Paper I), we have performed a linear stability analysis for local nonaxisymmetric disturbances in the shearing-wave formalism. While the linear theory uncovers no exponentially growing instability (except for convective instability in the absence of shear), interpretation of the results is somewhat difficult due to the nonnormal nature of the linear differential operators: ${ }^{2}$ one has a coualod cot of difforantiol amotiono in timo mothor thon o dianorsion

Baroclinic instabilities: an overview (3)

* Petersen et al. (2007) revived the idea, with anelastic spectral simulations showing vortex amplification.
* They also included a new ingredient: thermal diffusion.
pert Vort, $\mathrm{t}=35$ orb per

pert Vort, $\mathrm{t}=51$ orb per

pert Vort, $\mathrm{t}=87$ orb per

Petersen et al. 2007

Outline

* A brief introduction
* Vortices in accretion discs?
* Planetary formation and transport
* The baroclinic instability in 2D
* Shearing box model
* Instability main properties
* Phenomenological description
* The instability in accretion discs
* Compressibility
* (3D stability)
* Conclusions

The shearing box model

* Local approximation:
* Neglect curvature effects
* Almost incompressible (incompressible approximation valid in first approximation)
* Have to include the radial stratification to take into account baroclinic effects (Boussinesq).

(some) equations

* Incompressible equations in 2D $(x, y)=(r, \phi)$
* Stratification in the Boussinesq approximation
* Buoyancy frequency:

$$
N^{2}=-\frac{1}{\gamma \Sigma} \frac{\partial P}{\partial R} \frac{\partial}{\partial R} \ln \left(\frac{P}{\Sigma \gamma}\right)
$$

* In 2D, stratification is a source of vertical vorticity through the baroclinic term

$$
\begin{aligned}
\partial_{t} \omega+\boldsymbol{u} \cdot \boldsymbol{\nabla} \omega & =\Lambda N^{2} \partial_{y} \theta+\nu \Delta \omega \\
\partial_{t} \theta+\boldsymbol{u} \cdot \boldsymbol{\nabla}(\theta+x / \Lambda) & =\mu \Delta \theta
\end{aligned}
$$

Non axisymmetric temperature perturbations can locally produce vorticity

Linear stability

* Dimensionless number comparing stratification and rotation (shear):

$$
R i=\frac{N^{2}}{\Omega^{2}}
$$

* The stability to axisymmetric disturbances is given by the Solberg-Hoïland criterion

$$
R i>-1 \longmapsto \text { Stability }
$$

* In discs,

$$
|R i| \lesssim 10^{-2}
$$

Radially stratified discs are linearly stable to axisymmetric disturbances

The baroclinic instability: vortex amplification

* Initial condition: box-centred Kida vortex
- Radial (x) stratification with $N^{2}<0$
* Integrated for 20 orbits
* Vertical vorticity plot

The effect of stratification

Vortex amplification is due to the stratification.
Requires $\mathrm{N}^{2}<0$ (or equivalently $T \sim r^{d}$ with $d<-0.5$)

The effect of the stratification (cont'd)

- Enstrophy $\left.\left.\langle | \omega\right|^{2}\right\rangle$ as a function of the stratification parameter $R i=N^{2} / \Omega^{2}$

Requires $N^{2}<0$ (or equivalently $T \sim r^{d}$ with $d<-0.5$ assuming MMSN density profile)

A nonlinear instability

* Influence of the amplitude of the initial perturbation

The instability appears for finite amplitude disturbances.
Explains Johnson \& Gammie (2005) negative result.

The role of thermal diffusion

* Enstrophy evolution as a function of the thermal diffusion parameter

Thermal diffusion (not too strong!) is required to get the instability. See also Petersen et al. (2007)

Phenomenological description

* A to B: The fluid particle is cooler and heavier than the surrounding gas. It is accelerated by gravity toward the star.
* B to C: Background temperature is constant. The particle is reheated by thermal diffusion.
* C to D: Fluid particle hotter and lighter than the background: outward acceleration.
* D to A: Particle cooled by thermal diffusion.

Fluid motion is amplified on the $A B$ and $C D$ branches.

Summary

* This instability:
* produces and amplifies vortices in local disc models (shearing boxes)
* appears when $N^{2}<0$ (when the temperature profile is steep enough)
* requires explicit thermal diffusion
* is nonlinear (or subcritical)

Outline

* A brief introduction
* Vortices in accretion discs?
* Planetary formation and transport
* The baroclinic instability in 2D
* Shearing box model
* Instability main properties
* Phenomenological description
* The instability in accretion discs
* Compressibility
* (3D stability)
* Conclusions

Generation of density waves (single vortex)

* Linear stationary waves are described by a parabolic cylinder equation

$$
\frac{d^{2} v}{d x^{2}}+\left[\frac{\sigma^{2}-\kappa^{2}}{c^{2}}-k^{2}\right] v=0 \quad \text { where } \quad \sigma=\frac{3}{2} \Omega x k
$$

* The vortex produces a «tail», connected to the wave region through the sonic line

Compressibility, waves and transport

* In fully compressible simulations, vortices produce density waves (see also Johnson \mathcal{E} Gammie 2005 ;
Bodo et al 2005, 2007 ; Heinemann E Papaloizou 2009a,b).

vorticity

density

Waves and vortex migration

* The Baroclinic instability still work in global simulations
* Asymmetric wave excitation

Vortex migration! (See Pardekooper's talk)

Vortex stability: the Kida vortex

* Kida vortex defined my a vorticity patch ω_{v}.
* Inside the vortex core, streamlines are elliptical

Kida Vortex (cont'd)

* Inside the vortex core, the 2D velocity reads

$$
u_{x}^{0}=S \frac{1}{\chi-1} \chi y, \quad u_{y}^{0}=-S \frac{1}{(\chi-1)} \frac{1}{\chi} x .
$$

* Or in simplified version

$$
u_{i}^{0}=S A_{i j} x_{j} \quad \quad \boldsymbol{A}=\frac{1}{\chi-1}\left(\begin{array}{ccc}
0 & \chi & 0 \\
-\chi^{-1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

* Describe 3D perturbations inside the core:

$$
\begin{aligned}
\partial_{t} \mathbf{v} & =-\nabla P-\mathbf{u}^{0} \cdot \nabla \mathbf{v}-\mathbf{v} \cdot \nabla \mathbf{u}^{\mathbf{0}}-2 \boldsymbol{\Omega} \times \mathbf{v} \\
\nabla \cdot \mathbf{v} & =0
\end{aligned}
$$

* Analysis valid only inside the vortex core!

Evolution of 3D perturbations

* Fourier decomposition using time dependent wave-vectors:

$$
\mathbf{v}=\mathbf{v}(t) \exp (i \mathbf{k}(t) \cdot \mathbf{x})
$$

* Leading to:
* Solution for $\mathbf{k}(\mathrm{t})$:

$$
\begin{aligned}
\dot{v}_{i}+i x_{k} v \cdot\left(\dot{k}_{k}+S k_{j} A_{j k}\right)= & -i k_{i} \Pi-S v_{j} A_{i j} \\
& -2 \epsilon_{i j k} \Omega_{j} v_{k} \\
k_{j} v_{j}= & 0
\end{aligned}
$$

$$
\mathbf{k}(t)=k_{0}\left(\sin (\theta) \cos [\phi(t)] \mathbf{e}_{\mathbf{x}}-\chi \sin (\theta) \sin [\phi(t)] \mathbf{e}_{\mathbf{y}}+\cos \theta \mathbf{e}_{\mathbf{z}}\right)
$$

with a turnover angle $\quad \phi(t)=\frac{S}{\chi-1}\left(t-t_{0}\right)$

* Final equation (similar to Bayly 1986):

$$
\frac{d v_{i}}{d \phi}=\left[\left(\frac{2 k_{i} k_{j}}{k^{2}}-\delta_{i j}\right) \bar{A}_{j m}+2\left(\frac{k_{i} k_{j}}{k^{2}}-\delta_{i j}\right) \bar{R}_{j m}\right] v_{m}
$$

with $\bar{A}=(\chi-1) \boldsymbol{A}$ and $\bar{R}_{j m}=(\chi-1) \epsilon_{j l m} \Omega_{l} / S$

* Stability properties do not depend on $|\mathbf{k}|$, but just on its direction !

Stability analysis

* Weak vortices always unstable with small growth rates
* Strong horizontal instability for $3 / 2<\chi<4$
* No instability (?) for $4<\chi<5.9$

Elliptical instability simulations

Perturbation localisation

* Growth rate comparable to linear theory
* Instability for $\chi=5.5$ can be explained by a resonance outside of the vortex core

Temporal evolution

Phenomenological argument

* Two characteristic frequencies in 3D vortices:
* Turnover frequency of closed streamlines ω_{τ}
* Frequency of local inertial modes (modified epicyclic frequency) \mathcal{K}_{L}
*An elliptic instability exists when a resonance occurs on one streamline:
$\kappa_{L}=n \omega_{\tau} \quad$ where $\quad \kappa_{L}=\kappa_{L}^{\max } \frac{k_{z}}{|\mathbf{k}|}$
for a point vortex:

3D instabilities and the SBI

* 3D growth rates depend on the vortex aspect ratio $\chi=a / b$.

Elliptical instability growth rate in a Kida vortex

* The baroclinic instability amplifies the vortex χ decreases with time
At some point, 3D instabilities will be dominant...

3D instabilities and the SBI

Triggering 3D instabilities depends on the vortex aspect
ratio

3D instabilities and the SBI (cont'd)

After some time, a quasi-equilibrium is reached...

Dust accumulation in turbulent vortices

$\mathrm{T}=121.180000$ orbits

Conclusions

* A «steep» temperature profile will generate vortices everywhere in a disc.
* Vortices produce waves which
* transport angular momentum
* generate vortex migration
* Open questions:
* Magnetic fields? (magneto-elliptic instabilities, MRI turbulence) cf W. Lyra talk
* 3D circulation? cf H. Méheut talk
* Temperature profile in the disc? cf H. Klahr talk

Thank you

