Concentration of solids in 3D Rossby vortices

Héloïse Meheut

CENTER FOR SPACE AND HABITABILITY

UNIVERSITÄT BERN

Center for Space and Habitability University of Bern

In collaboration with:

Willy Benz Fabien Casse Rony Keppens Dong Lai Zakaria Meliani Michel Tagger Peggy Varnière Cong Yu

Marseille 09/2012

Rossby vortex: 3D streamlines

A linear approach

- Linearized equations
- Isothermal disk

1.5

- Hermite polynoms in vertical direction
 - \rightarrow vertical velocity

 $\begin{array}{c} 1.0 \\ (0,0) \\ (0,0) \\ -0.5 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\ 1.2 \\ 1.4 \\ 1.6 \\ r/r_0 \end{array}$

Meheut, Yu & Lai, 2012

heloise.meheut@space.unibe.ch

Marseille - 09/2012

Bi-fluid simulations

- Hydro simulation of the RWI
- Solids added at saturation

$$\begin{pmatrix} \partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0 \\ \partial_t \rho \mathbf{v} + \nabla (\mathbf{v} \cdot \rho \mathbf{v}) + \nabla p = -\rho \nabla \Phi_G + \rho_d f_d \\ \partial_t \rho_d + \nabla \cdot (\rho_d \mathbf{v}_d) = 0 \\ \partial_t \rho_d \mathbf{v}_d + \nabla (\mathbf{v}_d \cdot \rho \mathbf{v}_d) = -\rho_d \nabla \Phi_G - \rho_d f_d$$

$$\rho_d f_d = \frac{\rho_d}{\tau_s} (\mathbf{v} - \mathbf{v}_d).$$

Population	$\Omega_K^0 au_{ m s}^0$	$\Omega_K^{r_B} au_{ m s}^{r_B}$	s(cm)
1	0.010	0.009	0.1
2	0.020	0.017	0.2
3	0.030	0.026	0.3
4	0.050	0.042	0.5
5	0.100	0.085	1
6	0.200	0.17	2
7	0.300	0.256	3
8	0.500	0.427	5

• Epstein regime

Initial dust-to-gas ratio: 10⁻²

Midplane density: time evolution

2.65 3.00 3.35

2.65 3.00 3.35

Solids size

Vertical stratification

Meheut, Meliani, Varniere & Benz 2012

Summary

- 3D Rossby vortices do accumulate solid grains
- Dust-to-gas ratio reaches ~ I for larger solids
- Intermediate size solids are lifted above the midplane by the vortices
- Vortices survive for low grain density
- High grain density: vortices are dragged
- How strong are the Rossby vortices?

Marseille - 09/2012

How strong are the Rossby vortices?

- When does the linear theory break?
- Turnover timescale of the order of growth timescale
 - Landau damping breakdown due to particle trapping

Lovelace et al. 2009

• Turnover timescale ~ half the vorticity

Meheut, Lovelace & Lai, in prep.

heloise.meheut@space.unibe.ch

Marseille - 09/2012