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A linear approach

• Linearized equations

• Isothermal disk

• Hermite polynoms in vertical 
direction

vertical velocity

3D Rossby wave instability 7

Figure 8. Velocity streamlines in a vertical frame at t!0 ∼ 18.

been separated in the numerical simulations. The good agreement
between our numerical simulations and linear analysis indicates that
the simulations can correctly describe the RWI. The complicated
radial structure of the mode in the corotation region coupled with
the vertical structure is responsible for the complexity of the flow,
as plotted in Fig. 8.

Figure 10. Direct comparison of the linear (solid line) and numerical
(dashed line) approaches for the azimuthal velocity component. The same
normalization has been used for the two approaches.

Figure 9. Numerical ‘eigenfunctions’ of the m = 4 mode obtained with the non-linear code at t!0 ∼ 18. The dotted line is the real part, the red dashed line is
the imaginary part and the solid line is the amplitude of the m = 4 element of the azimuthal Fourier transform of the physical quantities.
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Figure 2. The RWI growth rate (in units of !0) as a function of the azimuthal
mode number m obtained by linear calculations for 2D (dashed line) and 3D
(solid line) discs.

conditions, our calculations show that for the choice of disc param-
eters and computational domain adopted in this paper, the complex
eigenvalues ω are almost identical. This can be understood since
only a small amount of wave energy is leaked out of the Rossby
zone as outgoing (away from the density bump) density waves.

Fig. 2 shows the linear growth rate of the 3D Rossby mode trapped
around the density bump as a function of the azimuthal wavenumber
m. The 2D result, obtained by including only the n = 0 terms in the
expansion (15), is also shown for comparison. We see that the 3D
growth rates are only slightly smaller than the 2D ones under the
same conditions (see Section 4.1 below). In all cases, we find that

the real part of the mode frequency ωr close to m!0, with ωr/m!0

= 0.974 for m = 2 and 0.986 for m = 6.
Fig. 3 depicts the eigenfunctions of the m = 4 mode. For each

variable, we show the n = 0 and 2 components, except for the
vertical velocity which has a null n = 0 component. The amplitudes
of the eigenfunctions are normalized so that the maximum value
of the radial velocity perturbation |ur0| equals unity (this maximum
occurs at r ! r0). Note that the Rossby mode is confined around the
corotation radius (where ωr = m!), which is close to the density
bump. But the mode can leak out as spiral density waves inside the
inner Lindblad resonance (where ω − m! = −κ) and outside the
outer Lindblad resonance (where ω − m! = κ). (See e.g. Tsang
& Lai 2008; Lai & Tsang 2009, for discussion on the wave zones
for Rossby waves and density waves.) The n = 0 spiral wave (as a
function of r) satisfies the WKB amplitude relation for η0 (Tsang
& Lai 2008):

|η0(r)| ∝
(

c2
s |D|

r2%2

)1/4

(26)

and similar relations for ur0 and uϕ0. The n = 2 component is
driven by the coupling with the n = 0 component. The vertical
velocity has a small but non-zero amplitude, and as this is a pure
n = 2 component, its amplitude increases with height, whereas the
other variables (ur, uϕ and δρ) are dominated in the Rossby wave
region by the vertically constant component (n = 0). This means

Figure 3. Eigenfunctions of the m = 4 mode. The dotted line shows the real part, the dashed line the imaginary part and the solid line the absolute value. The
vertical dot–dashed lines give the positions of the inner and outer Lindblad resonances. The radius is in units of r0; see also Section 4.
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Bi-fluid simulations

• Epstein regime

• Initial dust-to-gas ratio: 10-2

H. Meheut et al.: Dust-trapping Rossby vortices in protoplanetary disks

Fig. 1. Amplitude of the total density perturbation and the main modes
on a logarithmic scale as a function of time. The solid line is a fit of the
linear growth giving a growth rate of 0.17ΩK(rB).

density slope gives a surface density varying approximately as
Σ ∼ r−0.5 in the absence of the bump. The shape of the Gaussian
bump is defined by its amplitude χ = 1, width σ = 0.1 AU, and
radial position rB = 3 AU. The vertical and radial equilibria are
achieved thanks to the density and azimuthal velocity profiles:

ρ = ρz=0
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γ − 1
γS ργ−1

z=0
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− 1√

r2 + z2
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+ rS γργ−2
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with S = 10−3. This gives a temperature of approximatively
2.5 102K at a radius of 1AU. On top of this equilibrium state,
we added small random perturbations on the radial velocity with
a relative amplitude to the inner azimuthal velocity of 10−4. If
not specified, the length is given in AU, the time t̃ in the code
time unit corresponding to 1/(2π) yr, and the densities are nor-
malised to ρ0.

2.3. Growth of the instability

These conditions are favourable for the RWI, and the simula-
tion shows its growth with the formation of Rossby vortices.
After the exponential growth phase that lasts for a few rotations,
the instability reaches saturation as expected. At this point the
amplitude of the perturbations cease to grow exponentially and
maintain a nearly constant value. Figure 1 shows the amplitude
of the density perturbations on a logarithmic scale as a function
of time. At the time t̃ = 300, the instability has fully reached the
saturation, and there is no significant change in the structure of
the disk on a timescale of a few rotations. This corresponds to ap-
proximately 50yr and 14 rotations at the radius of the bump. This
evolution and the longer term stability of Rossby vortices have
been studied in the absence of dust by Meheut et al. (2012a),
showing that the vortices survive over at least a few hundred
years.

In the same figure, the growth of a few modes is also plotted.
A mode is an element of the Fourier transform of the density:

ρ(r, z,ϕ, t̃) =
�

m

ρm(r, z, t̃) exp(−imϕ) (9)

where the azimuthal mode number m is a positive integer. The
most unstable azimuthal mode during the exponential growth is
the one with m = 5. This azimuthal mode number corresponds to
the number of anticyclonic vortices, which are rotating counter
to the Keplerian rotation and are high-pressure regions. These
five high-pressure regions will be easily identified in Fig. 5. In
Fig. 1, the linear fit of the amplitude growth of the density per-
turbation on a logarithmic scale is also plotted. This fit gives a
growth rate of 0.17Ω(rB) that is consistent with a linear calcula-
tion (see also the discussion in Lin (2012) on the shape of the ini-
tial bump). The growth of the instability has already been widely
studied, so we do not aim to discuss it further here. At t̃ = 300,
we add a dust population in the disk to follow its concentration
in the five anticyclonic vortices as explained in the next section.
This defines the time t = 0, when we have

t = t̃ − 300/Ω0
K . (10)

3. Dust and gas joint evolution

When the vortices are self-consistently formed in the gas-only
disk, we start to model the joint evolution of gas and dust.

3.1. Bi-fluid model

In the cylindrical coordinates the bi-fluid equations are



∂tρ + ∇ · (ρv) = 0
∂tρv + ∇(v · ρv) + ∇p = −ρ∇ΦG + ρd f d
∂tρd + ∇ · (ρdvd) = 0
∂tρdvd + ∇(vd · ρvd) = −ρd∇ΦG − ρd f d

(11)

where ρ and ρd are the density of gas and dust, v and vd their
velocities, p the gas pressure, and ΦG the gravitational potential
of the central star. The drag force f d between the gas and the
dust is expressed in terms of the stopping time τs

ρd f d =
ρd

τs
(v − vd). (12)

The stopping time corresponds to the timescale of the coupling
between gas and dust. A high stopping time corresponds to
solids somewhat coupled to the gas, whereas the particles with
τs << 1 will strictly follow the gas displacements. The expres-
sion of the stopping time depends on the mean free path λ of
the particle and eventually the Reynolds number of the flow. We
assume here spherical grains with radius sp. The small particles
with sp <

9
4λ are in the Epstein regime with (Takeuchi & Lin,

2002)

τs =

�
π

8
ρpsp

csρ
, (13)

where the
�
π
8 factor comes from the expression of the mean

thermal velocity in 3D (Takeuchi & Artymowicz, 2001), and the
drag force is written as

ρd fd =

�
8
π

cs
ρdρ

ρpsp
(v − vd) (14)
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Fig. 1. Amplitude of the total density perturbation and the main modes
on a logarithmic scale as a function of time. The solid line is a fit of the
linear growth giving a growth rate of 0.17ΩK(rB).

density slope gives a surface density varying approximately as
Σ ∼ r−0.5 in the absence of the bump. The shape of the Gaussian
bump is defined by its amplitude χ = 1, width σ = 0.1 AU, and
radial position rB = 3 AU. The vertical and radial equilibria are
achieved thanks to the density and azimuthal velocity profiles:
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with S = 10−3. This gives a temperature of approximatively
2.5 102K at a radius of 1AU. On top of this equilibrium state,
we added small random perturbations on the radial velocity with
a relative amplitude to the inner azimuthal velocity of 10−4. If
not specified, the length is given in AU, the time t̃ in the code
time unit corresponding to 1/(2π) yr, and the densities are nor-
malised to ρ0.

2.3. Growth of the instability

These conditions are favourable for the RWI, and the simula-
tion shows its growth with the formation of Rossby vortices.
After the exponential growth phase that lasts for a few rotations,
the instability reaches saturation as expected. At this point the
amplitude of the perturbations cease to grow exponentially and
maintain a nearly constant value. Figure 1 shows the amplitude
of the density perturbations on a logarithmic scale as a function
of time. At the time t̃ = 300, the instability has fully reached the
saturation, and there is no significant change in the structure of
the disk on a timescale of a few rotations. This corresponds to ap-
proximately 50yr and 14 rotations at the radius of the bump. This
evolution and the longer term stability of Rossby vortices have
been studied in the absence of dust by Meheut et al. (2012a),
showing that the vortices survive over at least a few hundred
years.

In the same figure, the growth of a few modes is also plotted.
A mode is an element of the Fourier transform of the density:

ρ(r, z,ϕ, t̃) =
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ρm(r, z, t̃) exp(−imϕ) (9)

where the azimuthal mode number m is a positive integer. The
most unstable azimuthal mode during the exponential growth is
the one with m = 5. This azimuthal mode number corresponds to
the number of anticyclonic vortices, which are rotating counter
to the Keplerian rotation and are high-pressure regions. These
five high-pressure regions will be easily identified in Fig. 5. In
Fig. 1, the linear fit of the amplitude growth of the density per-
turbation on a logarithmic scale is also plotted. This fit gives a
growth rate of 0.17Ω(rB) that is consistent with a linear calcula-
tion (see also the discussion in Lin (2012) on the shape of the ini-
tial bump). The growth of the instability has already been widely
studied, so we do not aim to discuss it further here. At t̃ = 300,
we add a dust population in the disk to follow its concentration
in the five anticyclonic vortices as explained in the next section.
This defines the time t = 0, when we have

t = t̃ − 300/Ω0
K . (10)

3. Dust and gas joint evolution

When the vortices are self-consistently formed in the gas-only
disk, we start to model the joint evolution of gas and dust.

3.1. Bi-fluid model

In the cylindrical coordinates the bi-fluid equations are
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where ρ and ρd are the density of gas and dust, v and vd their
velocities, p the gas pressure, and ΦG the gravitational potential
of the central star. The drag force f d between the gas and the
dust is expressed in terms of the stopping time τs

ρd f d =
ρd
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(v − vd). (12)

The stopping time corresponds to the timescale of the coupling
between gas and dust. A high stopping time corresponds to
solids somewhat coupled to the gas, whereas the particles with
τs << 1 will strictly follow the gas displacements. The expres-
sion of the stopping time depends on the mean free path λ of
the particle and eventually the Reynolds number of the flow. We
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Table 1. Characteristics of the eight dust populations.

Population Ω0
Kτ

0
s ΩrB

K τ
rB
s s(cm)

1 0.010 0.009 0.1
2 0.020 0.017 0.2
3 0.030 0.026 0.3
4 0.050 0.042 0.5
5 0.100 0.085 1
6 0.200 0.17 2
7 0.300 0.256 3
8 0.500 0.427 5

Notes. Column 2: stopping time defined at the inner edge of the disk.
Column 3: stopping time at the radius of the bump at the beginning
of the simulation. Column 4: estimation of the dust size for each
population.

with ρp the density of the individual solid particles. The inter-1

nal density of a solid particle ρp is not to be confused with the2

density of the dust fluid ρd.3

In the following, the particle species will be defined by the4

non-dimensional stopping time parameterΩ0
Kτ

0
s expressed in the5

midplane at the inner edge of the simulation. With an inner edge6

at 1 AU and a typical mass ratio of ρ0/ρp = 10−10 corresponding7

to an individual dust particle density of ρp = 1g cm−3 we have8

sp ∼ 10 Ω0
Kτ

0
s cm. (15)

We consider that each dust population corresponds to a dust size,9

but different stopping times could also correspond to the same10

size but different densities.11

The back reaction of the dust on the gas is included in12

the simulation. From Eq. (12), one can define the gas stopping13

time τs,g as in ρd f d =
ρ
τs,g

(u−ud) so τs,g =
ρ
ρd
τs. This timescale for14

the back reaction decreases with increasing dust density. When15

the dust-to-gas ratio ρd/ρ is low, the dynamics are dominated by16

the gas. This is not the case any longer when the dust density17

is close to the gas density, and the back reaction of the dust on18

the gas cannot be neglected. Initially the back reaction is negli-19

gible but will become more and more important when the dust is20

concentrated in the vortices and approaches the gas density.21

Extensive tests of the multi-fluid module of AMRVAC will22

be soon published, and first tests have already been presented in23

van Marle et al. (2011).24

3.2. Parameters25

We performed eight simulations with the different populations of26

dust presented in Table 1. The range of dust sizes corresponds to27

the intermediate regime where the dust and the gas are partially28

coupled. The dust is added to the gas disk with a density of 1% of29

the initial gas density. The dust density is initially axisymmetric30

with a purely Keplerian velocity.31

The simulation was run over 16yr corresponding to three32

Keplerian rotations at the position of the vortices. The rotation33

period at the bump radius TB = 2πΩ−1
K (rB) is used as a time unit.34

3.3. Validity of the model35

Hersant (2009) has shown that the bi-fluid approximation where36

the dust is modelled as a pressureless fluid is only valid for an37

adimensional stopping time ΩKτs < 0.5 owing to the low veloc-38

ity dispersion. This is the maximum value chosen at the inner39

edge of the disk, so the pressureless approximation is valid.40

The model of the dust as a continuous fluid is valid if there41

are enough solid particles in each grid cell and enough collisions42

Fig. 2. Radial velocity difference between dust and gas obtained in the
simulation (dotted line), with the approach of Weidenschilling (1977)
(dashed line). The upper and lower plots are obtained for Ω0

Kτ
0
s = 0.5

and 0.01. See text for details.

to define a mean state. These conditions are fulfilled as the 43

Stokes number ΩKτs < 1. 44

The Epstein regime corresponds to particle sizes sp <
9
4λ, 45

where λ is the mean free path of the gas molecule. This condition 46

is directly related to the Knudsen number Kn = λ/sp. Since the 47

main constituent of the gas is molecular hydrogen, the mean free 48

path is written as 49

λ =
µ

ρσH2

(16)

where µ = 3.9 × 10−24g is the mean molecular weight of a 5:1 50

H2-He mixture, and σH2 = 2 × 10−15 cm2 is the cross section of 51

molecular hydrogen. This gives a maximum grain size of 45 cm 52

at 1 AU. The mean free path increases with distance to the cen- 53

tral star as the gas density decreases. Because we consider here 54

the region of the disk around 3 AU, the Epstein regime is valid 55

for the grains we consider, with the maximum size around 5 cm. 56

We also note that the Reynolds number is 57

Re =
sp∆v

λcs
< 1, (17)

which is consistent with the Epstein regime. 58

4. Results 59

4.1. Test of the dust radial drift 60

To test the numerical method in the context of protoplanetary 61

disks, the results of the simulations were compared with the ap- 62

proach of Weidenschilling (1977). In the stationary limit, the dif- 63

ference between the radial velocity of the dust and the gas is 64

given by 65

vr,d − vr,g =
∆g

Ω2
Kτs + 1/τs

, (18)
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Fig. 1. Amplitude of the total density perturbation and the main modes
on a logarithmic scale as a function of time. The solid line is a fit of the
linear growth giving a growth rate of 0.17ΩK(rB).

density slope gives a surface density varying approximately as
Σ ∼ r−0.5 in the absence of the bump. The shape of the Gaussian
bump is defined by its amplitude χ = 1, width σ = 0.1 AU, and
radial position rB = 3 AU. The vertical and radial equilibria are
achieved thanks to the density and azimuthal velocity profiles:
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with S = 10−3. This gives a temperature of approximatively
2.5 102K at a radius of 1AU. On top of this equilibrium state,
we added small random perturbations on the radial velocity with
a relative amplitude to the inner azimuthal velocity of 10−4. If
not specified, the length is given in AU, the time t̃ in the code
time unit corresponding to 1/(2π) yr, and the densities are nor-
malised to ρ0.

2.3. Growth of the instability

These conditions are favourable for the RWI, and the simula-
tion shows its growth with the formation of Rossby vortices.
After the exponential growth phase that lasts for a few rotations,
the instability reaches saturation as expected. At this point the
amplitude of the perturbations cease to grow exponentially and
maintain a nearly constant value. Figure 1 shows the amplitude
of the density perturbations on a logarithmic scale as a function
of time. At the time t̃ = 300, the instability has fully reached the
saturation, and there is no significant change in the structure of
the disk on a timescale of a few rotations. This corresponds to ap-
proximately 50yr and 14 rotations at the radius of the bump. This
evolution and the longer term stability of Rossby vortices have
been studied in the absence of dust by Meheut et al. (2012a),
showing that the vortices survive over at least a few hundred
years.

In the same figure, the growth of a few modes is also plotted.
A mode is an element of the Fourier transform of the density:

ρ(r, z,ϕ, t̃) =
�

m

ρm(r, z, t̃) exp(−imϕ) (9)

where the azimuthal mode number m is a positive integer. The
most unstable azimuthal mode during the exponential growth is
the one with m = 5. This azimuthal mode number corresponds to
the number of anticyclonic vortices, which are rotating counter
to the Keplerian rotation and are high-pressure regions. These
five high-pressure regions will be easily identified in Fig. 5. In
Fig. 1, the linear fit of the amplitude growth of the density per-
turbation on a logarithmic scale is also plotted. This fit gives a
growth rate of 0.17Ω(rB) that is consistent with a linear calcula-
tion (see also the discussion in Lin (2012) on the shape of the ini-
tial bump). The growth of the instability has already been widely
studied, so we do not aim to discuss it further here. At t̃ = 300,
we add a dust population in the disk to follow its concentration
in the five anticyclonic vortices as explained in the next section.
This defines the time t = 0, when we have

t = t̃ − 300/Ω0
K . (10)

3. Dust and gas joint evolution

When the vortices are self-consistently formed in the gas-only
disk, we start to model the joint evolution of gas and dust.

3.1. Bi-fluid model

In the cylindrical coordinates the bi-fluid equations are



∂tρ + ∇ · (ρv) = 0
∂tρv + ∇(v · ρv) + ∇p = −ρ∇ΦG + ρd f d
∂tρd + ∇ · (ρdvd) = 0
∂tρdvd + ∇(vd · ρvd) = −ρd∇ΦG − ρd f d

(11)

where ρ and ρd are the density of gas and dust, v and vd their
velocities, p the gas pressure, and ΦG the gravitational potential
of the central star. The drag force f d between the gas and the
dust is expressed in terms of the stopping time τs

ρd f d =
ρd

τs
(v − vd). (12)

The stopping time corresponds to the timescale of the coupling
between gas and dust. A high stopping time corresponds to
solids somewhat coupled to the gas, whereas the particles with
τs << 1 will strictly follow the gas displacements. The expres-
sion of the stopping time depends on the mean free path λ of
the particle and eventually the Reynolds number of the flow. We
assume here spherical grains with radius sp. The small particles
with sp <

9
4λ are in the Epstein regime with (Takeuchi & Lin,

2002)

τs =

�
π

8
ρpsp

csρ
, (13)

where the
�
π
8 factor comes from the expression of the mean

thermal velocity in 3D (Takeuchi & Artymowicz, 2001), and the
drag force is written as

ρd fd =

�
8
π
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ρdρ

ρpsp
(v − vd) (14)
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• Hydro simulation of the RWI

• Solids added at saturation
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Fig. 5. Midplane density of gas and dust for Ω0
Kτ

0
s = 0.5, 0.2, 0.1, and 0.01 after three rotations. Since the range in density vary widely between

populations, different colour tables are used to avoid misunderstandings. A colour version of this figure is accessible in the electronic version of
this paper.

forming vortices show a split in two different vortices as shown
in Fig. 11. This evolution appears only for the 5cm grains, and
no such behaviour is observed with smaller grains. This is corre-
lated with the high dust-to-gas ratio reached with this dust popu-
lation. The origin of this splitting of the vortices may be related
to the evolution of the RWI under external forcing rather than
to the heavy core instability (Chang & Oishi, 2010), as the RWI
is characterised by the presence of two Rossby waves, one on
each side of the density maximum. Gas and dust mutually cou-
pled are expected to trigger the streaming instability (Youdin &
Goodman, 2005). This instability starts to be relevant when the
dust begins to drag the gas, and the simulations are performed
up to this threshold.

In the absence of dust, the vortices rotate with nearly the az-
imuthal velocity of the gas at the density bump (r = 3AU) which
is Keplerian, so the vortices do approximatively three rotations
over the simulation. See Meheut et al. (2012b) for the calcula-
tion of the vortices’s velocity when there is no back reaction of
the dust on the gas. As the dust accelerates the rotation of the
gas, the vortex frequency is no longer that of the wave amplified
by the RWI. When not sustained by the instability, the vortices
begin to decay. Of course, this applies to those vortices formed
without dust and to those whose frequency is determined by the
”classical” RWI. For this reason, a dusty RWI should be investi-
gated, but this is beyond the scope of this paper.

5. Summary and outlooks

We have studied the concentration of dust particles in 3D vor-
tices. To our knowledge this is the first time the dust-trapping
mechanism has been explored in stable 3D Rossby vortices. We
have first done a simulation of the self-consistent formation the
vortices by the Rossby wave instability before including the dust
particles. An important difference with the previous studies us-
ing analytical vortices (e.g. Kida 1981) is the presence of a ver-
tical velocity in the inner part of the vortices. We have presented
the dust-trapping properties of the 3D Rossby vortices. This
mechanism is very efficient when the dust is only partially cou-
pled to the gas (Ω0

Kτ
0
s = 0.5), and a high dust density is reached

in the midplane. The estimation of the dust mass concentrated
in the vortices gives a value of approximately the mass of Mars
in a sphere of radius 0.1AU with a higher density reached in the
centre.

Those particles more coupled to the gas show a larger den-
sity in the upper region of the disk. For these intermediate size
grains (mm to cm sizes), there is a competition between sedi-
mentation toward the midplane and lifting toward the surface
by the vertical velocity of the vortices. This high dust density
in the upper region is of particular interest in the context of the
forthcoming observation of protoplanetary disks but this needs
to be confirmed by the use of a radiative transfer code with a full
3D approach. The results may differ from those obtained with
a razor thin disk approach (Wolf & Klahr, 2002; Regály et al.,
2011).
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Fig. 8. Vertical density profiles in the vortices (r/r0 = 3) after 3 rotations for three different population of dust: Ω0

Kτ
0

s = 0.2, 0.05, 0.01 and for the

gas in each of theses cases. As the ranges of density vary largely between populations, different colour tables are used to avoid misunderstandings.

The position of the vortices is not the same in the 5cm grain simulation due to the back-reaction of the dust on the gas as explained in section 4.4.

A colour version of this figure is accessible in the electronic version of this paper.
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Summary

• 3D Rossby vortices do accumulate solid 
grains

• Dust-to-gas ratio reaches ~ 1 for larger 
solids

• Intermediate size solids are lifted above 
the midplane by the vortices

• Vortices survive for low grain density

• High grain density: vortices are dragged

• How strong are the Rossby vortices?

H. Meheut et al.: Dust-trapping Rossby vortices in protoplanetary disks

Fig. 11. Inverse of gas vortensity at t/TB = 3 for the simulation without
any dust populations, and the two cases Ω0

Kτ
0
s = 0.01 and Ω0

Kτ
0
s = 0.5.

In the latter case, there is a modification of the structure of the vortices
due to the back reaction of dust on the gas. A colour version of this
figure is accessible in the electronic version of this paper.
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How strong are the Rossby vortices?

• When does the linear theory break?

• Turnover timescale of the order of 
growth timescale

• Landau damping breakdown due to 
particle trapping

• Turnover timescale ~ half the vorticity

Lovelace et al. 2009

Meheut, Lovelace & Lai, in prep.
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How strong are the Rossby vortices?

4 H. Meheut, R. Lovelace, D. Lai
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Figure 3. Amplitude of the Rossby waves (vorticity) in a logarithmic scale as a function of time (Ω−1
0 ). A fit of the exponential growth

(solid line) gives the growth rate γ. The dashed line corresponds to the saturation amplitude estimated by the model.

mated the maximum vorticity. This is due to the shape of

the vortices. Indeed we considered circular vortices to esti-

mate the circulation time inside the vortex, but the vortices

with lower m have elongated shapes as can be seen in Fig. 4

where vortices streamlines in the (r,ϕ) plane are plotted.

This shape was to be expected as the width of the Rossby

wave propagation region is fixed by the width of the initial

density bump and the length of the vortices is directly re-

lated to the azimuthal mode numberm. Assuming a doubled

circulation time for the elongated m = 2 vortices gives the

correct saturation amplitude, as one can see in Fig. 3 for the

m2χ30 simulation.

On the other hand, the vorticity maximum is overes-

timated for the highest azimuthal mode number when the

growth rate is low. See for instance the m5χ15 simulation.

We have checked that this is not related to numerical dis-

sipation by doubling the resolution and obtaining no modi-

fication of ωmax
v . Indeed the energy loss responsible for the

low saturation amplitude may be due to the density waves

propagating outside the Lindblad resonances that were not

considered in the local mechanism proposed for growth and

saturation in section 2.2. The amplitude of the density waves

and the energy loss is the highest when the Lindblad reso-

nances are close to the corotation radius and the width of the

evanescent wave region is small. This regions correspond to

a positive effective potential Veff in Fig. 2. Since the Lind-

blad resonances are closer to corotation for higher azimuthal

mode number, the evanescent region is shorter. There is

transmission of energy through this region, energy which

is then carried away by density waves. This may explain

the lower amplitude at saturation. Moreover these density

waves are also responsible for the angular momentum trans-

fer through the disc and as a result for the evolution of the

radial structure of the disc from which the linear growth is

computed. The distance between the two propagation region

appears clearly on Fig. 5 where both the vorticity waves in

the region of corotation and the position of the Lindblad res-

onances are visible. One can also identify the spiral density

waves propagating inward and outward from the Lindblad

resonances in the m = 5 plot.
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