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Introduction

● By now, this is well known here:
– Need km sized planetesimals
– Start with um sized grains, with canonical 0.01 

dust/gas ratio
– ??

● Need gravitational instability in dust layer (?)
– Requires overdensity of order ~ 20 -100x (when 

including K-H turbulence)



  

Brief Review



  

Disk Vortices

● Are embedded in a shearing background
● Are typically anticyclonic, with high pressure 

cores
– These trap dust



  

In 2009, we were thinking of 
Small Scale Vortices

Umurhan & Regev (2005)

(i.e. r << H)



  

Of course, now we have RWI, SBI, 
etc too...



  

Simulations Agree: Vortices trap 
dust

Meheut et al (2012)



  

But are dusty vortices stable?



  



  



  

We construct a SIMPLE model

● Incompressible
– Though with density stratification within the vortex 

● One-fluid 
● Linear
● Based on simple equilibrium solutions

– Kida vortex
– Goldreich, Narayan, & Goodman (1987) “planet” 

solution



  

...and get the Heavy Core Instability

● A 2D linear, parametric instability in elliptic, 
protoplanetary disk vortices
– Typically anticyclonic, high pressure cores



  

...So how does this thing work?



  

Simple Case: No shear, Gaussian 
Vortex

This goes way back to Howard (1973); Gans (1975); 
Eckhoff (1984), &c...and is nicely summarized in Sipp et al 
(2005)



  

Dispersion Relation

Unstable if gradient is negative: 
heavy core 



  

Put simply,

heavy stuff

light stuff



  

Add shear 

Use either Kida or GNG “Planet” solution, both 
adjusted to have a density gradient specified 
(balanced by non-trivial pressure distribution)

Lesur & Papaloizou (2009)



  

Basic Geometry

● Use elliptical 
coordinates: (b, phi)
– b labels ellipse
– Phi is azimuthal angle



  

Basic Geometry

● Use elliptical 
coordinates: (b, phi)
– b labels ellipse
– Phi is azimuthal angle

Angle of wavevector with 
respect to phase angle



  

Pressure Distribution
in Elliptical Vortices

Kida vortex

GNG “planets”

Much simpler! 
Axisymmetric!



  

Use Floquet + WKB

+

=

linearize

WKB(J)

Ux, uy 
perturbations 

Actually solve 
for amplitude a



  

End up with 
Final Amplitude Equations

ODEs with periodic coefficients → Floquet Analysis



  

First, consider Light core 

● Though unrealistic, it's simpler, and allows us to 
develop analogy

Lesur & Papaloizou (2009)

d lnρ

d lnb
>0



  

Can Put this in terms of the VRTI

● PPD Vortex has High Pressure core
– So light cores are unstable to VRTI

Lesur & Papaloizou (2009)

d lnρ

d ln b
>0

H
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Now go to heavy core

● Consider effective gravity for GNG



  

Heavy Cores
Effective gravity

Density 
perturbation

Velocity 
perturbation
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d lnρ
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Survey Parameter Space
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Open Issues

● Why has this not been seen in simulations?
– Could be one-fluid approximation
– Could be resolution—may require more points across 

vortex gradients

● Is the equilibrium (Kida + dln rho /d ln b) 
reasonable?



  

Conclusions

● The Heavy Core Instability grows on vortices with a 
steep enough density gradient and a big enough 
ellipticity

● It is a purely 2D instability, unlike the elliptic 
instability

● This effect is robust for at least two different vortex 
equilibria

● The non-linear saturation of the instability is unknown
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