THE HEAVY-CORE INSTABILITY IN DUST GATHERING PROTOPLANETARY VORTICES

Jeff Oishi, American Museum of Natural History Phil Chang, University of Wisconsin-Milwaukee

OUTLINE

- Introduction
- Equilibrium vortices with density gradients
- The Vortical Rayleigh-Taylor Instability
- Solution Methods
- The Heavy Core Instability and Planet Formation
- Issues, Problems, and Future Directions

INTRODUCTION

- By now, this is well known here:
 - Need km sized planetesimals
 - Start with um sized grains, with canonical 0.01 dust/gas ratio
 - ??
- Need gravitational instability in dust layer (?)
 - Requires overdensity of order ~ 20 -100x (when including K-H turbulence)

Brief Review

Disk Vortices

- Are embedded in a shearing background
- Are typically anticyclonic, with high pressure cores
 - These trap dust

In 2009, we were thinking of Small Scale Vortices

Umurhan & Regev (2005)

OF COURSE, NOW WE HAVE RWI, SBI, ETC TOO...

Simulations Agree: Vortices trap dust

But are dusty vortices stable?

le <u>E</u> dit <u>∨</u> iew										
	Hi <u>s</u> tory <u>B</u>	ookmarks	<u>T</u> ools <u>H</u> elp							
🛓 🗼 🔻 f	2 🛛 🏠	http:/	//www.google	.com/search	n?q=he	eavy+vorte	x&ie=utf-88	oe=utf-8&ad	=t&rls=org.	i☆▼
weather 闘 E	ART 🌆 ADS	s 🕵 orion	🚾 lib 💿 iPy	/ 💿 MPL	🍁 yt	GPencil	🗯 NERSC	<mark>טר</mark> Kraken	<u> m</u> ywiki	e twit
heavy vortex	- Google Sea	irch 🖁	•							
l eb <u>Images</u> <u>V</u> i	deos <u>Maps</u>	News Shop	ping <u>Gmail</u> n	<u>nore</u> 🔻					jsoi	ishi@gr
Google	e heavy	vortex					Sea	rch Advance	ed Search	
Web 🖶 Show	v options						Res	ults 1 - 10 of :	about 2,890,	000 for <u> </u>
The penetrat the free surface of heavy vorte www.springerlin by PJ Sullivan	ion of a den of the contain x ring that per k.com/index/f 1972 - <u>Cited I</u>	sity interfac er (Section 2 netrates a der MM1521G761 by 3 - <u>Relater</u>	e by heavy B) and form h nsity interface 0067M6.pdf - <u>d articles</u>	vortex rin avy vortex Similar - 🌮 [<u>gs</u> ∶rings. ⊼ ⊠	Typical r	notion			
An experiment: Frydenlund Pul openlibrary.org/ (PDF) Maximul File Format: PE Heavy vortice: Figure 5: Heav www2.imperial.	ntal Investigation olished in 1972 /b/OL50840811 <u>m Rise Heig</u> DF/Adobe Acro s. Flows 1-5 ar y-vortex caps ac.uk/ssherw/	of heavy vo of heavy vo (, Universitete M - <u>Cached</u> - <u>hts of Heav</u> obat - <u>View as</u> re familiar to t at maximum /BBVF_pos	avy vortex- rtex-rings in h ti Oslo, <u>Similar</u> - P r vy Vortex C s HTML the fluid dynam rise height for ster_Myrtroeen	rings in ho omogenous : aps icist whilst t L pdf - <u>Similar</u>	moge surroun co-date r - 💬 🖣	nous dings. by C there is an	Oddvar			

Eile Edit View History Bookmarks Tools Help Image: The Start Star	☆▼
 	☆▼
Sweather BART ADS Sorion Site iPy MPL by CPencil KNERSC Kraken Mywiki heavy vortex - Google Search Web Images Videos Maps News Shopping Gmail more < jsois Google heavy vortex heavy vortex Search Advanced Search Neth Distance of the second search	
Sheavy vortex - Google Search Web Images Videos Maps News Shopping Gmail more jsois Google heavy vortex Search Math Web Description	╘ twit
Web Images Videos Maps News Shopping Gmail more jsois Google heavy vortex Search Search	
Google heavy vortex Search	hi@gn
Results 1 - 10 of about 2,690,0	00 for <u>I</u>
the free surface of the container (Section 2B) and form heavy vortex rings Typical motion of heavy vortex ring that penetrates a density interface www.springerlink.com/index/MM1521G7610067/M6.pdf - <u>Similar</u> - P T X by PJ Sullivan - 1972 - <u>Cited by 3</u> - <u>Related articles</u> An experimental investigation of heavy vortex-rings in homogenous An experimental investigation of heavy vortex-rings in homogenous surroundings. by Oddvar Frydenlund Published in 1972, Universitetet i Oslo, openlibrary.org/b/OL5084081M - <u>Cached</u> - <u>Similar</u> - P T X File Format: PDF/Adobe Acrobat - <u>View as HTML</u> Heavy vortices. Flows 1-5 are familiar to the fluid dynamicist whilst to-date there is an Figure 5: Heavy-vortex caps at maximum rise height for L www2.imperial.ac.uk/ssherw//BBVF_poster_Mytroeen.pdf - <u>Similar</u> - P T X	
particularly interested in the case where a vortex has a heavy internal core (i) If G2 >Φ for some radius r, which corresponds to a very heavy vortex , journals.cambridge.org/production/action/cjoGetFulltext?fulltextid <u>Similar</u> - Piv by D SIPP - 2005 - <u>Cited by 10</u> - <u>Related articles</u> - <u>All 4 versions</u> <u>Phys. Rev. B 70, 144420 (2004): Lee and Lee - Out-of-plane vortex For a large enough field, a heavy vortex loses its stability and then the sign of the</u>	

We construct a SIMPLE model

- Incompressible
 - Though with density stratification *within* the vortex
- One-fluid
- Linear
- Based on *simple* equilibrium solutions
 - Kida vortex
 - Goldreich, Narayan, & Goodman (1987) "planet" solution

... AND GET THE HEAVY CORE INSTABILITY

- A 2D linear, parametric instability in elliptic, protoplanetary disk vortices
 - Typically anticyclonic, high pressure cores

...So how does this thing work?

Simple Case: No shear, Gaussian Vortex

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial r} + \frac{v}{r} \frac{\partial \rho}{\partial \phi} = 0, \qquad (A1)$$

where ρ is the density, $u = \dot{r}$ and $v = r\dot{\phi}$, the momentum equations,

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial r} + \frac{v}{r}\frac{\partial u}{\partial \phi} - \frac{v^2}{r} = -\frac{1}{\rho}\frac{\partial P}{\partial r},\qquad(A2)$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + \frac{v}{r} \frac{\partial v}{\partial \phi} + \frac{uv}{r} = -\frac{1}{\rho r} \frac{\partial P}{\partial \phi}, \quad (A3)$$

where P is the pressure, and the incompressibility condition,

$$r^{-1}\frac{\partial ru}{\partial r} + \frac{1}{r}\frac{\partial v}{\partial \phi} = 0.$$
 (A4)

This goes way back to Howard (1973); Gans (1975); Eckhoff (1984), &c...and is nicely summarized in Sipp et al (2005)

DISPERSION RELATION

$$\bar{\sigma} = (\omega - mv/r).$$

$$\bar{\sigma}^2 \left(\frac{m^2}{r^2} + k^2\right) + i\bar{\sigma}k\frac{m}{r} \left(\frac{\partial v}{\partial r} - \frac{v}{r}\right) - \frac{m^2}{r^2}\frac{v^2}{r}\frac{\partial \ln\rho}{\partial r} = 0.$$
(A10)

PUT SIMPLY,

Rayleigh-Taylor Vortical Rayleigh-Taylor

ADD SHEAR

Use either Kida or GNG "Planet" solution, both adjusted to have a *density gradient* specified (balanced by non-trivial pressure distribution)

Basic Geometry

- Use *elliptical* coordinates: (b, phi)
 - b labels ellipse
 - Phi is azimuthal angle

Basic Geometry

- Use *elliptical* coordinates: (b, phi)
 - b labels ellipse
 - Phi is azimuthal angle

Angle of wavevector with respect to phase angle

PRESSURE DISTRIBUTION IN ELLIPTICAL VORTICES

$$\frac{1}{\rho} \frac{\partial P}{\partial b} = \frac{3b\Omega^2}{4(\chi - 1)^2} [(4\chi^2 - 8\chi + 7)\cos^2\phi + 3\chi^2\sin^2\phi - 4\chi(\chi - 1)], \qquad (23)$$
$$\frac{1}{b\rho} \frac{\partial P}{\partial \phi} = -\frac{3\Omega^2}{4(\chi - 1)^2} (\chi^2 - 8\chi + 7)\sin\phi\cos\phi. \qquad (24)$$

Kida vortex

GNG "planets"

$$\frac{1}{\rho} \frac{\partial P}{\partial b} = b\Omega^2 \left(\frac{3\chi^2}{\chi^2 - 1} - 2\sqrt{\frac{3\chi^2}{\chi^2 - 1}} \right), \quad (19)$$

$$\frac{1}{b\rho} \frac{\partial P}{\partial \phi} = 0. \quad (20)$$
Much simpler!
Axisymmetric!

Use Floquet + WKB

$$\frac{d\delta\rho}{dt} + \delta \boldsymbol{u} \cdot \boldsymbol{\nabla}\rho = 0, \qquad (25)$$

$$\nabla \cdot \delta \boldsymbol{u} = 0,$$
 (26) linearize

.

$$\frac{d\delta \boldsymbol{u}}{dt} + \delta \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + 2 \times \delta \boldsymbol{u} = -\frac{1}{\rho} \boldsymbol{\nabla} \delta \boldsymbol{P} + \frac{\delta \rho}{\rho} \frac{1}{\rho} \boldsymbol{\nabla} \boldsymbol{P}, \quad (27)$$

+

$$\begin{pmatrix} \delta \boldsymbol{u} \\ \delta \boldsymbol{P} \\ \delta \boldsymbol{\rho} \end{pmatrix} = \exp\left(\frac{i\Phi(\boldsymbol{x},t)}{\epsilon}\right) \left[\begin{pmatrix} \tilde{\boldsymbol{u}} \\ \tilde{\boldsymbol{P}} \\ \tilde{\boldsymbol{\rho}} \end{pmatrix} (\boldsymbol{x},t) + \epsilon \begin{pmatrix} \tilde{\boldsymbol{u}}_{\epsilon} \\ \tilde{\boldsymbol{P}}_{\epsilon} \\ \tilde{\boldsymbol{\rho}}_{\epsilon} \end{pmatrix} (\boldsymbol{x},t) \right], \qquad \text{WKB}(\mathbf{J})$$
(28)

Actually solve for amplitude a $\tilde{u}_x = a(b, t)\sin(\omega t + \phi_{k,0}),$ (45) Ux, uy $\tilde{u}_y = a(b, t)\chi \cos(\omega t + \phi_{k,0}),$ (46)perturbations

END UP WITH FINAL AMPLITUDE EQUATIONS

$$\frac{da}{dt} = 2\Lambda^{-1}\omega(\chi^2 - 1)\cos(\omega t + \phi_{k,0})\sin(\omega t + \phi_{k,0})a + \Lambda^{-1}[(\omega^2 + 3\Omega^2)\cos(\omega t + \phi_0)\sin(\omega t + \phi_{k,0}) - \chi^2\omega^2\sin(\omega t + \phi_0)\cos(\omega t + \phi_{k,0}) - 2\Omega\omega\chi\sin(\phi_{k,0} - \phi_0)]b\frac{\tilde{\rho}}{\rho}, \qquad (47)$$

$$\frac{d\tilde{\rho}}{dt} = -a\sin(\phi_{k,0} - \phi_0)\frac{\partial\rho}{\partial b},\qquad(48)$$

ODEs with periodic coefficients \rightarrow Floquet Analysis

First, consider *Light* core

• Though unrealistic, it's simpler, and allows us to develop analogy $\frac{d \ln \rho}{d \ln \rho} > 0$

Lesur & Papaloizou (2009)

Can Put this in terms of the VRTI

- PPD Vortex has High Pressure core
 - So *light cores* are unstable to VRTI

Lesur & Papaloizou (2009)

Now go to heavy core

• Consider *effective gravity* for GNG

$$g = \sqrt{g_x^2 + g_y^2} = g_0 \sqrt{\cos^2 \phi + \frac{\sin^2 \phi}{\chi^2}},$$
 (52)

where

$$g_0 = b\Omega^2 \left(\frac{3\chi^2}{\chi^2 - 1} - 2\sqrt{\frac{3\chi^2}{\chi^2 - 1}} \right) = \text{const.}$$
 (53)

Survey Parameter Space

Initial Vortex Elliptical Density Gradient

OPEN ISSUES

- Why has this not been seen in simulations?
 - Could be one-fluid approximation
 - Could be resolution—may require more points across vortex gradients
- Is the equilibrium (Kida + dln rho /d ln b) reasonable?

Conclusions

- The Heavy Core Instability grows on vortices with a steep enough density gradient and a big enough ellipticity
- It is a purely 2D instability, unlike the elliptic instability
- This effect is robust for at least two different vortex equilibria
- The non-linear saturation of the instability is unknown