On Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

Martin E. Pessah (NBI) + Chi-kwan Chan (NORDITA) - ApJ, 751, 48, 2012

Instabilities and Structures in Protoplanetary DIsks - September 16-20, 2012 - Marseille

Standard Accretion Disk Model

Shakura & Sunyaev (1973)

* "The efficiency of the mechanism of angular momentum transport is characterized by parameter"

$$\alpha = \frac{v_{\text{turb}}}{c_{\text{s}}} + \frac{B^2}{4\pi\rho c_{\text{s}}^2}$$

In terms of stress,

$$T_{r\phi} \equiv R_{r\phi} - M_{r\phi} \sim \alpha P$$

But...

Shakura & Sunyaev (1973) considered Keplerian flow
Shear-dependent turbulent viscosity - not addressed
All later works assume Newtonian turbulent viscosity

$$\nu = \alpha c_{\rm s} H = \alpha c_{\rm s}^2 R / v_{\phi}$$

 $T_{r\phi} = \alpha q \Sigma c_{\rm s}^2$ $q \equiv -d \ln \Omega / d \ln R$

Is Newtonian turbulent viscosity a good assumption?

Standard Calculation

- Assume steady state
- * Continuity equation \Rightarrow constant accretion rate $\dot{M} = -2\pi R\Sigma v_R = {
 m constant}$
- * Angular momentum equation \Rightarrow flux balance

$$\dot{J} = \Omega R^2 \dot{M} - 2\pi R^2 H T_{r\phi} = \text{constant}$$

 $\dot{J} = \Omega R^2 \dot{M} + 2\pi R^2 \Sigma \nu R \Omega' = {
m constant}$ "standard" $T_{r\phi} = -\nu (\Sigma/H) R \Omega'$

"standard" $T_{r\phi} \sim -\frac{d\ln\Omega}{d\ln r}$

"standard" $T_{r\phi} \sim -\frac{d\ln\Omega}{d\ln r}$

Angular momentum transport seems rather inefficient for negative q (beware of limited range explored!)

What really happens here?

What really happens here?

Numerical Simulations I.

Numerical Simulations II.

Armitage (2002)

Numerical Simulations III.

Numerical Simulations III.

We see lots of magnetic energy but not much magnetic/Maxwell stress in simulations (but...)

Numerical Simulations III.

Steinacker and Papaloizou (2002)

We see lots of magnetic energy but not much magnetic/Maxwell stress in simulations (but...)

Some Insight from a Minimal Approach

- * Standard incompressible shearing box approximation * Consider a single mode $\delta v_i, \delta b_i \sim e^{i \mathbf{k} \cdot \mathbf{x}}$
 - (non-linear terms drop out, e.g., Goodman & Xu 1994)
- Not just linearized equations!
- Isolate modes unrelated to MRI (kz = 0) [shear flow!!!]
- Explore the evolution of energy and stress as a function of the local shear parameter "q"

Equations I.

The momentum and induction equations

$$d_t \hat{\boldsymbol{u}} - q \,\Omega_0 \hat{u}_x \check{\boldsymbol{y}} = i\omega_A \hat{\boldsymbol{b}} - \nu k^2 \hat{\boldsymbol{u}} - 2\Omega_0 \check{\boldsymbol{z}} \times \hat{\boldsymbol{u}} - i\boldsymbol{k}\hat{P}$$
$$d_t \hat{\boldsymbol{b}} + q \,\Omega_0 \hat{b}_x \check{\boldsymbol{y}} = i\omega_A \hat{\boldsymbol{u}} - \eta k^2 \hat{\boldsymbol{b}}.$$

* Note that $\omega_{\rm A} \equiv \boldsymbol{B}(t) \cdot \boldsymbol{k}(t) = {\rm constant}$

because $\partial_t B_0 = -q \,\Omega_0 B_{0x} \check{y}$ $k' \cdot x' = k(t) \cdot x = (k'_x + q \,\Omega_0 t k'_y) x + k'_y y$

Equations I.

The momentum and induction equations

$$d_t \hat{\boldsymbol{u}} - q \,\Omega_0 \hat{u}_x \check{\boldsymbol{y}} = i\omega_A \hat{\boldsymbol{b}} - \nu k^2 \hat{\boldsymbol{u}} - 2\Omega_0 \check{\boldsymbol{z}} \times \hat{\boldsymbol{u}} - i\boldsymbol{k}\hat{P}_x$$
$$d_t \hat{\boldsymbol{b}} + q \,\Omega_0 \hat{b}_x \check{\boldsymbol{y}} = i\omega_A \hat{\boldsymbol{u}} - \eta k^2 \check{\boldsymbol{b}}.$$

* Note that $\omega_A \equiv \boldsymbol{B}(t) \cdot \boldsymbol{k}(t) = ext{constant}$

because $\partial_t \boldsymbol{B}_0 = -q \,\Omega_0 B_{0x} \boldsymbol{\check{y}}$ $\boldsymbol{k}' \cdot \boldsymbol{x}' = \boldsymbol{k}(t) \cdot \boldsymbol{x} = (k'_x + q \,\Omega_0 t k'_y) x + k'_y y$

Equations II.

Define dimensionless quantities

$$\tau \equiv k_x(t)/k_y = q \,\Omega_0 t \qquad \omega \equiv \omega_A/q \,\Omega_0$$

The system of equations reduces to

$$\frac{d}{d\tau} \begin{bmatrix} \hat{u}_x \\ \hat{b}_x \end{bmatrix} = \begin{bmatrix} -\Gamma(\tau) & i\omega \\ i\omega & 0 \end{bmatrix} \begin{bmatrix} \hat{u}_x \\ \hat{b}_x \end{bmatrix}$$
$$\Gamma(\tau) \equiv 2\tau/(\tau^2 + 1)$$

Results

Reduce the coupled equations to one 2nd order ODE

$$\frac{d^2}{d\tau^2}\hat{b}_x + \Gamma(\tau)\frac{d}{d\tau}\hat{b}_x + \omega^2\hat{b}_x = 0$$

 \bullet For $\tau^2 \gg 1$, we get a spherical Bessel equation

$$\hat{u}_x = Sj_1(\omega\tau) + Cy_1(\omega\tau)$$
$$\hat{b}_x = -iSj_0(\omega\tau) - iCy_0(\omega\tau)$$
$$\hat{u}_y = -\tau\hat{u}_x$$
$$\hat{u}_y = -\tau\hat{b}_x$$

Results

Reduce the coupled equations to one 2nd order ODE

$$\frac{d^2}{d\tau^2}\hat{b}_x + \Gamma(\tau)\frac{d}{d\tau}\hat{b}_x + \omega^2\hat{b}_x = 0$$

 \clubsuit For $\tau^2 \gg 1$, we get a spherical Bessel equation

$$\hat{u}_{x} = Sj_{1}(\omega\tau) + Cy_{1}(\omega\tau)$$
$$\hat{b}_{x} = -iSj_{0}(\omega\tau) - iCy_{0}(\omega\tau)$$
$$\hat{u}_{y} = -\tau\hat{u}_{x}$$
$$\hat{u}_{y} = -\tau\hat{b}_{x}$$

Results

Reduce the coupled equations to one 2nd order ODE

$$\frac{d^2}{d\tau^2}\hat{b}_x + \Gamma(\tau)\frac{d}{d\tau}\hat{b}_x + \omega^2\hat{b}_x = 0$$

 \clubsuit For $\tau^2 \gg 1$, we get a spherical Bessel equation

$$\hat{u}_{x} = Sj_{1}(\omega\tau) + Cy_{1}(\omega\tau)$$
$$\hat{b}_{x} = -iSj_{0}(\omega\tau) - iCy_{0}(\omega\tau)$$
$$\hat{u}_{y} = -\tau\hat{u}_{x}$$
$$\hat{u}_{y} = -\tau\hat{b}_{x}$$

Pessah & Chan (2012)

Conclusions & Pending Issues

- It is possible to generate magnetic energy without generating much stress in the boundary layer
- The energy gain is described by

$$\frac{E_+}{E_-} \approx 10 \left(\frac{q \,\Omega_0}{\omega_{\rm A}}\right)^2$$

- Consistent with simulations
- Something important remains to be understood!
- * What is the mechanism for angular momentum transport when the MRI is not active? Belyaev, Rafikov, & Stone, 2012
- How does this translate into a model for $T_{r\phi}(d\Omega/dr)$?