
Martin E. Pessah (NBI) + Chi-kwan Chan (NORDITA) - ApJ, 751, 48, 2012

Instabilities and Structures in Protoplanetary DIsks - September 16-20, 2012 - Marseille

On Angular Momentum Transport in Accretion Disk 
Boundary Layers Around Weakly Magnetized Stars

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012ApJ...751...48P&db_key=AST&link_type=ABSTRACT&high=502022d10c23752
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012ApJ...751...48P&db_key=AST&link_type=ABSTRACT&high=502022d10c23752
http://sun.stanford.edu/IAUS294/ABSTRACTS/Pessah_007.html
http://sun.stanford.edu/IAUS294/ABSTRACTS/Pessah_007.html
http://sun.stanford.edu/IAUS294/ABSTRACTS/Pessah_007.html
http://sun.stanford.edu/IAUS294/ABSTRACTS/Pessah_007.html


Standard Picture of the BL

Ω(R∗) ≡ Ω∗

Ω(R) ≈ ΩK(R)



Standard Picture of the BL

Ω(R∗) ≡ Ω∗

Ω(R) ≈ ΩK(R)



Standard Picture of the BL

Ω(R∗) ≡ Ω∗

Ω(R) ≈ ΩK(R)



Standard Picture of the BL

Ω(R∗) ≡ Ω∗

Ω(R) ≈ ΩK(R)



Standard Picture of the BL

Ω(R∗) ≡ Ω∗

Ω(R) ≈ ΩK(R)

“standard”



Standard Picture of the BL

Ω(R∗) ≡ Ω∗

Ω(R) ≈ ΩK(R)

depends on 

“standard”



Standard Picture of the BL

Ω(R∗) ≡ Ω∗

Ω(R) ≈ ΩK(R)

depends on 

What is a good model for the stress?

“standard”



Standard Accretion Disk Model

✤ Shakura & Sunyaev (1973)
✤ “The efficiency of the mechanism of angular 

momentum transport is characterized by parameter”

✤ In terms of stress,

α =
vturb
cs

+
B2

4πρc2s

Trφ ≡ Rrφ −Mrφ ∼ αP



But...

✤ Shakura & Sunyaev (1973) considered Keplerian flow
✤ Shear-dependent turbulent viscosity - not addressed
✤ All later works assume Newtonian turbulent viscosity

✤ Is Newtonian turbulent viscosity a good assumption?

Trφ = αqΣc2s q ≡ −d lnΩ/d lnR

ν = αcsH = αc
2
sR/vφ



Standard Calculation

✤ Assume steady state
✤ Continuity equation ⇒ constant accretion rate

✤ Angular momentum equation ⇒ flux balance
Ṁ = −2πRΣvR = constant

“standard”
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MRI Turbulence ≠ α-Viscosity

Pessah & Chan (2008)

Angular momentum 
transport seems 
rather inefficient 

for negative q
(beware of limited 
range explored!)

“standard”
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Numerical Simulations I.

Armitage (2002)
Steinacker and Papaloizou (2002)



Numerical Simulations II.

Armitage (2002)



Numerical Simulations III.

Steinacker and Papaloizou (2002)



Numerical Simulations III.

Steinacker and Papaloizou (2002)

We see lots of magnetic energy but not much 
magnetic/Maxwell stress in simulations (but...)
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Some Insight from a 
Minimal Approach

✤ Standard incompressible shearing box approximation

✤ Consider a single mode                         

(non-linear terms drop out, e.g., Goodman & Xu 1994)

✤ Not just linearized equations!

✤ Isolate modes unrelated to MRI (kz = 0)

✤ Explore the evolution of energy and stress as a 
function of the local shear parameter “q”

δvi, δbi ∼ eik·x

[shear flow!!!]



Equations I.

✤ The momentum and induction equations

✤ Note that

because

dtû− qΩ0ûxy̌ = iωAb̂− νk2û− 2Ω0ž × û− ikP̂ ,

dtb̂+ qΩ0b̂xy̌ = iωAû− ηk2b̂.

ωA ≡ B(t) · k(t) = constant
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✤ Define dimensionless quantities

✤ The system of equations reduces to

Equations II.

τ ≡ kx(t)/ky = qΩ0t ω ≡ ωA/qΩ0

d

dτ

�
ûx

b̂x

�
=

�
−Γ(τ) iω
iω 0

� �
ûx

b̂x

�

Γ(τ) ≡ 2τ/(τ2 + 1)



Results

✤ Reduce the coupled equations to one 2nd order ODE

✤ For             , we get a spherical Bessel equation

d2

dτ2
b̂x + Γ(τ)

d

dτ
b̂x + ω2b̂x = 0

τ2 � 1

ûx = Sj1(ωτ) + Cy1(ωτ)

b̂x = −iSj0(ωτ)− iCy0(ωτ)

ûy = −τ ûx

ûy = −τ b̂x
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ûy = −τ ûx
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ûx = Sj1(ωτ) + Cy1(ωτ)

b̂x = −iSj0(ωτ)− iCy0(ωτ)

ûy = −τ ûx
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Similar results than in Balbus & Hawley 1992...

Q: How do the magnetic energy and stress behave?
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dE

dt
= qTxy
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E+

E−
≈ 10

�
qΩ0

ωA

�2



Conclusions & Pending Issues

✤ It is possible to generate magnetic energy without 
generating much stress in the boundary layer

✤ The energy gain is described by

✤ ”Consistent” with simulations
✤ Something important remains to be understood!
✤ What is the mechanism for angular momentum 

transport when the MRI is not active?
✤ How does this translate into a model for                     ?

E+

E−
≈ 10

�
qΩ0

ωA

�2

Belyaev, Rafikov, & Stone, 2012
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