Planetary Magnetospheres

Philippe Zarka

Observatoire de Paris - CNRS, LESIA, France,
philippe.zarka@obspm.fr
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres ?
• Foreword

High plasma conductivity
⇒ B frozen-in
⇒ \(E = -V \times B \) almost everywhere (0 in plasma frame)
⇒ quasi-neutrality
& \(E \cdot B = 0 \) (\(\Delta \phi \) conserved along B lines,
 = electric equipotentials)

• Acronyms

SW = solar wind
MS = magnetosphere
MP = magnetopause
B = magnetic field
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres ?
• Solar Wind

- dominated by bulk energy density: \(N mV^2/2 \)
- carries away solar B rooted in the Sun \(\Rightarrow \) ballerina skirt
- SW parameters at planetary orbits (r in AU):
 \[
 V \sim 400/r^{2/7} \text{ km/s} \quad T \sim 2 \times 10^5/r^{2/7} \text{ K}
 \]
 \[
 N = 5/r^2 \text{ cm}^{-3}
 \]
 \[
 B_r = 3/r^2 \text{ nT} \quad B_\phi = B_r \Omega r/V = 3/r \text{ nT}
 \]
 \[
 V_S \sim 60/r^{1/7} \text{ km/s} \quad V_A \sim 40x(1/2+r^{-2}/2)^{1/2} \text{ km/s}
 \]

- CIR, CME, more shocks away from the Sun (SW radial evolution)
- Solar Wind - Obstacle interaction

- depends on presence of obstacle’s:
 intrinsic large-scale B ionosphere conductivity

- 1st case \Rightarrow abrupt boundary in planetary $B = MP$

[Lepping, 1986]

[Cahill & Patel, 1967]
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres?
- **Planetary Magnetic Fields**
 - dipole + high-order terms
 - known up to n~14 at Earth, n≤4 at other planets
 - measurements: MAG in-situ, teledetection (IR, radio)

<table>
<thead>
<tr>
<th>Planète</th>
<th>Terre</th>
<th>Jupiter</th>
<th>Jupiter</th>
<th>Saturne</th>
<th>Uranus</th>
<th>Neptune</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_p (km)</td>
<td>6378</td>
<td>71372</td>
<td>71372</td>
<td>60330</td>
<td>25600</td>
<td>24765</td>
</tr>
<tr>
<td>Modèle</td>
<td>IGRF 2000</td>
<td>O6</td>
<td>VIT4</td>
<td>Z3</td>
<td>Q3</td>
<td>O8</td>
</tr>
<tr>
<td>g_0</td>
<td>-0.29615</td>
<td>+4.24202</td>
<td>+4.28077</td>
<td>+0.21535</td>
<td>+0.11893</td>
<td>+0.09732</td>
</tr>
<tr>
<td>h_1</td>
<td>+0.05186</td>
<td>+0.24116</td>
<td>+0.24616</td>
<td>0</td>
<td>-0.15685</td>
<td>-0.09889</td>
</tr>
<tr>
<td>g_2</td>
<td>-0.02267</td>
<td>-0.02181</td>
<td>-0.04283</td>
<td>+0.01642</td>
<td>-0.06030</td>
<td>+0.07448</td>
</tr>
<tr>
<td>h_1</td>
<td>+0.03072</td>
<td>-0.71106</td>
<td>-0.59426</td>
<td>0</td>
<td>-0.12587</td>
<td>+0.00664</td>
</tr>
<tr>
<td>g_2</td>
<td>-0.02478</td>
<td>-0.40304</td>
<td>-0.50154</td>
<td>0</td>
<td>+0.06116</td>
<td>+0.11230</td>
</tr>
<tr>
<td>h_1</td>
<td>+0.01672</td>
<td>+0.48714</td>
<td>+0.44386</td>
<td>0</td>
<td>+0.00196</td>
<td>+0.04499</td>
</tr>
<tr>
<td>g_1</td>
<td>-0.00458</td>
<td>+0.07179</td>
<td>+0.38452</td>
<td>0</td>
<td>+0.04759</td>
<td>-0.00070</td>
</tr>
<tr>
<td>h_1</td>
<td>+0.01341</td>
<td>+0.07565</td>
<td>+0.08906</td>
<td>+0.02743</td>
<td>0</td>
<td>-0.06592</td>
</tr>
<tr>
<td>g_2</td>
<td>-0.02290</td>
<td>-0.15493</td>
<td>-0.21447</td>
<td>0</td>
<td>0</td>
<td>+0.04098</td>
</tr>
<tr>
<td>h_1</td>
<td>-0.00227</td>
<td>-0.38824</td>
<td>-0.17187</td>
<td>0</td>
<td>0</td>
<td>-0.03669</td>
</tr>
<tr>
<td>g_3</td>
<td>+0.01253</td>
<td>+0.19775</td>
<td>+0.21130</td>
<td>0</td>
<td>0</td>
<td>-0.03581</td>
</tr>
<tr>
<td>h_1</td>
<td>+0.00296</td>
<td>+0.34243</td>
<td>+0.40667</td>
<td>0</td>
<td>0</td>
<td>+0.01791</td>
</tr>
<tr>
<td>g_3</td>
<td>+0.00715</td>
<td>-0.17958</td>
<td>-0.01190</td>
<td>0</td>
<td>0</td>
<td>+0.00484</td>
</tr>
<tr>
<td>h_1</td>
<td>-0.00492</td>
<td>-0.22439</td>
<td>-0.35263</td>
<td>0</td>
<td>0</td>
<td>-0.00770</td>
</tr>
<tr>
<td>M' dipolaire (G.R_p^3)</td>
<td>0.305</td>
<td>4.26</td>
<td>0.215</td>
<td>0.228</td>
<td>0.142</td>
<td></td>
</tr>
<tr>
<td>Inclinaison (B / Ω)</td>
<td>+11°</td>
<td>-9.6°</td>
<td>-0°</td>
<td>-58.6°</td>
<td>-46.9°</td>
<td></td>
</tr>
<tr>
<td>Offset centre dipôle / centre planète (R_p)</td>
<td>0.08</td>
<td>0.07</td>
<td>0.04</td>
<td>0.31</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

[adapted from Ness, 1992]
• Planetary Magnetic Fields [cont’d]

- weak dipolar field @ Mercury, ~10° tilt

[Acuña et al., 1983]

- ring current (magnetodisc) @ Jupiter & Saturn

[Ness et al., 1976, Connerney et al., 1988]
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres?
• Magnetospheric Boundaries

- Pressure equilibrium : $P_{SW} = K N m V^2 \cos^2 \chi = P_{MS} = B_T^2 / 2 \mu_0$

 with $B_T = B_P + B_C = 2 B_P$ at MP nose

 $K = 1 - 2$

 \Rightarrow MP shape

- MP sub-solar point (dipolar field : $B_P = B_{eq} (1 + 3 \cos^2 \theta)^{1/2} / R^3$):

 $R_{MP} = (2 B_{eq}^2 / \mu_0 K N m V^2)^{1/6}$
Magnetospheric Boundaries [cont’d]

<table>
<thead>
<tr>
<th></th>
<th>Mercure</th>
<th>Terre</th>
<th>Jupiter</th>
<th>Saturne</th>
<th>Uranus</th>
<th>Neptune</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_p (km)</td>
<td>2 439</td>
<td>6 378</td>
<td>71 492</td>
<td>60 268</td>
<td>25 559</td>
<td>24 764</td>
</tr>
<tr>
<td>D orbitale (UA)</td>
<td>0.39</td>
<td>1</td>
<td>5.2</td>
<td>9.5</td>
<td>19.2</td>
<td>30.1</td>
</tr>
<tr>
<td>M_{dip} (G.km3)</td>
<td>5.5×10^7</td>
<td>7.9×10^{10}</td>
<td>1.6×10^{15}</td>
<td>4.7×10^{13}</td>
<td>3.8×10^{12}</td>
<td>2.2×10^{12}</td>
</tr>
<tr>
<td>Champ à l'équateur</td>
<td>0.003</td>
<td>0.31</td>
<td>4.3</td>
<td>0.21</td>
<td>0.23</td>
<td>0.14</td>
</tr>
<tr>
<td>B_e (G)</td>
<td>+14</td>
<td>+11.7</td>
<td>-9.6</td>
<td>-0.</td>
<td>-58.6</td>
<td>-46.9</td>
</tr>
<tr>
<td>Inclinaison $[B,\Omega]$(^\circ) et sens</td>
<td>+14</td>
<td>+11.7</td>
<td>-9.6</td>
<td>-0.</td>
<td>-58.6</td>
<td>-46.9</td>
</tr>
<tr>
<td>R_{MP} (R_p) calculée [mesurée]</td>
<td>1.4</td>
<td>9</td>
<td>40</td>
<td>17</td>
<td>22</td>
<td>21</td>
</tr>
</tbody>
</table>

[Encrenaz et al., 2003]
Magnetospheric Boundaries [cont’d]

- Jupiter’s MS larger and more compressible \((R_{MP} \propto P_{SW}^{-1/4.5}) \)

\(\Rightarrow \) internal plasma pressure

[Huddleston et al., 1998]
• Magnetospheric Boundaries [cont’d]

- supersonic / super-Alfvénic flow ⇒ bow shock ahead of MP
- in magnetosheath: slowed flow ($V:4$ for $M_A >> 1$)
 ⇒ B draping / pile-up ($|V||B| = c^i$)

[Spreiter et al., 1966]
• Magnetospheric Boundaries [cont’d]

- if no intrinsic B field
 ⇒ induced MS, bow shock,
 B draping, tail
 No cusp
• Magnetospheric Boundaries [cont’d]

- Earth bow shock: $R = \frac{25 R_E}{1 + 0.8 \cos \theta}$ thickness ~40% of MP
- Jupiter: MP closer to BS (thickness ~15%)
 \[\Rightarrow \text{equatorial flattening due mass loading (Io)} \]

[Joy et al., 2002; Russell, 2004]
[Courtesy R. Prangé]
- Magnetospheric Boundaries [cont’d]
 - on-going MS compression measured by Cassini + Galileo
 - Jovian magnetotail extent (≥5 AU) measured by Voyager

[Desch, 1983]

[Kurth et al., 2002]
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres?
• Plasma Sources

- **SW**: cusp + diffusion/reconnection across MP

 H & He, T~100 eV

 ~1% of SW flow

 10^{26} ions/s @ Earth

 10^{28} ions/s @ Jupiter

- **Ionosphere**: vertical diffusive equilibrium of cold plasma

 T~0.1-1. eV

 $N = N_0 \exp\left(-\frac{(z-z_0)}{2H}\right)$

 10^{26} N & O ions/s @ Earth

 10^{28} H ions/s @ Jupiter
- **Plasma Sources** [cont’d]

 - Satellites:

 - Io (volcanism)
 - \(3 \times 10^{28}\) S & O ions/s
 - \(\Rightarrow\) plasma torus [Bagenal, 1994]

 - Titan (atmospheric escape)
 - \(10^{26}\) H & N ions/s
 - (+C ?) [Sittler et al.; 2005]

 - Enceladus (exosphere, plumes)
 - source & sink?
 - [Dougherty et al., 2005; Jones et al., 2006]

 - Icy satellites (or Mercury’s) surface: sputtering
- **Plasma Sources** [cont’d]

- Rings (sputtering / photo-dissociation + ionisation)

 water ions, O^+, O_2^+ [Young et al., 2005; Bouhram et al., 2006]

 up to 10^{28} ions/s [Richardson & Jurac, 2005; Hansen et al., 2005]

- Plasma reservoirs: boundary layers, plasma/current sheet, radiation belts

- Total MS mass $\sim 10^{10}$ kg @ Jupiter, $\sim 10^7$ kg @ Earth
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres ?
- **Plasma Circulation**

 - **Closed MS**

 - $V_{SW} \parallel MP$
 - equipotential flow lines
 - no plasma penetration
 - MS electrically insulated from outside SW
 - Internal plasma entrained by friction (a few ρ_{Li})

 \Rightarrow 2 convection cells
Plasma Circulation [cont’d]

Ok / circulation observations at Earth **BUT**

- energetic plasma inside MS
- large scale E (dawn → dusk) inside MS
- quasi permanent circumpolar aurora (∅ = 10°-20°, UV + radio)
- SW control (B_z) of MS activity
- **Plasma Circulation** [cont’d]

 - **Open MS**

 B reconnection at MP (stationary ? patchy ? $\rightarrow B_N \neq 0$) when $B_z \parallel B_P$

 (MS closed or high-latitude reconnection when B_z anti// B_P)

 Transport of B line to tail, reconnection, dipolarization (= Dungey cycle)

 Neutral (X) line at equator

 Penetration of plasma in MS \Rightarrow no more equipotential

[Dungey, 1961]
cycle de circulation du plasma et du champ magnétique dans la magnétosphère terrestre
1ère reconnection (côté jour) = début du cycle
Transport au-dessus des pôles
2ème reconnection (côté nuit)
éjection d'une bulle de plasma (plasmoïde) vers la queue
et retour d'une boucle de champ magnétique vers le côté "jour"
= un sous-orage magnétosphérique
Plasma Circulation [cont’d]

- **Solar Convection** in MS [antisolar above the poles]
 \[E = -V \times B \sim \varepsilon V_{SW} \times B_{SW} \]
 \(\varepsilon = 0.1 - 0.2 \)
 \(\Delta \phi \sim \varepsilon V_{SW} B_{SW} \times 3 R_{MP} \)
 \(\sim 50 \text{ kV} @ \text{Earth} \)
 \(\sim 1 \text{ MV} @ \text{Jupiter} \)

- **Corotation**
 \[E = \Omega R \times B \]
 \(\Delta \phi \sim \Omega B_{eq} R_p^2 \)
 \(\sim 90 \text{ kV} @ \text{Earth} \)
 \(\sim 400 \text{ MV} @ \text{Jupiter} \)
- **Plasma Circulation** [cont’d]

 - *Global circulation = Convection + Corotation*

 Equipotentials = flow lines

 Stagnation point at LT = 18 h
- **Plasma Circulation** [cont’d]

- **Plasmasphere** = permanently closed field lines, corotation dominated
• **Plasma Circulation** [cont’d]

- Auroral oval = limit open/closed field lines

 = projection of equatorial neutral line on ionosphere

- Tail = MS antisolar extension, plasma convected to neutral plasma sheet -- -- --, stores / releases energy and magnetic flux
• Plasma Circulation [cont’d]
EARTH

SATURN

JUPITER

Corotation region
Plasmasphere

[Courtesy R. Prangé]
- **Plasma Circulation** [cont’d]

- Plasma sources vs Synchronous orbit (where $F_{\text{centrifugal}} = F_{\text{gravitation}}$)

<table>
<thead>
<tr>
<th>Planet</th>
<th>R_p [km]</th>
<th>Ω [rads/s]</th>
<th>G_{surf} [ms$^{-2}$]</th>
<th>$R_{\text{synch}}/R_{\text{planet}}$</th>
<th>Plasma sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>2440</td>
<td>1.24×10^{-6}</td>
<td>3.3</td>
<td>96</td>
<td>None</td>
</tr>
<tr>
<td>Earth</td>
<td>6371</td>
<td>7.29×10^{-5}</td>
<td>9.8</td>
<td>6.6</td>
<td>Ionosphere</td>
</tr>
<tr>
<td>Jupiter</td>
<td>70000</td>
<td>1.77×10^{-4}</td>
<td>25.6</td>
<td>2.3</td>
<td>Io</td>
</tr>
<tr>
<td>Saturn</td>
<td>60000</td>
<td>1.71×10^{-4}</td>
<td>10.8</td>
<td>1.8</td>
<td>Rings, moons</td>
</tr>
<tr>
<td>Uranus</td>
<td>25500</td>
<td>1.01×10^{-4}</td>
<td>8.6</td>
<td>3.2</td>
<td>Moons</td>
</tr>
<tr>
<td>Neptune</td>
<td>24830</td>
<td>1.01×10^{-4}</td>
<td>10.1</td>
<td>3.4</td>
<td>Moons</td>
</tr>
</tbody>
</table>

[Russell, 2004]

- At Jupiter: extended current disk
• Plasma Circulation [cont’d]

- Jupiter: outward radial transport (centrifugal interchange instability)
 ⇒ Vasyliunas cycle ~ rotation driven Dungey cycle
 ⇒ origin of auroral oval?

[André, 2006]

[Russell, 2001]

[Vasyliunas, 1983]
- **Plasma Circulation** [cont’d]

- Saturn: «intermediate» circulation?

[Image: Diagram of plasma circulation with labels such as Dungey-cycle, Vasyliunas-cycle, and Magnetopause.]

[Cowley et al., 2005]
• **Plasma Circulation** [cont’d]

- **Earth** dominated by convection
 ⇒ little/no rotational signature in magnetospheric phenomena (e.g. AKR)

- Same (even more so) expected for **Mercury**

- **Jupiter** dominated by corotation
 ⇒ many magnetospheric phenomena
 (particle flux, radio emissions…)
 reveal a strong rotational signature
 ⇒ measurement of rotation period to 10^{-6} accuracy [Higgins et al., 1997]

- **Saturn** = intermediate situation:
 corotation and convection compete
 ⇒ corotational signatures, with fluctuations
 (e.g. variable radio period) [Cecconi & Zarka, 2005]

Independent of B tilt! (at 1st order, except Uranus & Neptune)
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres ?
- Role of Ionosphere

- mapping of MS and SW \(\Delta \phi \) (via equipotential B lines)

\[\Rightarrow \text{high-latitude convection cells: } E_i >> E_{MS}, V_i << V_{MS} \]

- currents closure (in sputtered/vaporized regolith @ Mercury? \([\text{Slavin, 2004}]\))
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres ?
• Current Generators

\[\nabla \cdot J = 0 \]

- SW / MS interaction : « region 1 » currents @ Earth
driven by \(\Delta \phi \) (dawn \(\rightarrow \) dusk) \(\propto V_{SW} \times B_{SW} \)
- **Current Generators** [cont’d]

- radial diffusion from Io ⇒ \(J_r \)
- plasma acceleration (corotation) by \(J_r \times B_{MS} \)
 (+ slowing down MS plasma due to mass loading)
 at expense or ionospheric plasma momentum via \(J_i \times B_i \)
 \(\nabla \cdot J = 0 \Rightarrow J_i = J_r B_i / B_{MS} \sim 2R^3 J_r \leq \sigma_i E_i \sim \sigma_i \Omega B_e / R^{1/2} \)
 ⇒ Ok as long as \(J_r \leq \sigma_i \Omega B_e / 2R^{7/2} \)
- Corotation breakdown at 20-50 \(R_j \)
 ⇒ \(J_{//} \) max ⇒ main auroral oval at Jupiter
- **Current Generators** [cont’d]

Unmagnetized satellite / MS interaction \([\text{Saur et al., 2004}]\) :

\[
E = -V \times B_J \quad \text{with} \quad V = V_{\text{corot}} - V_K \quad (=57 \text{ km/s @ Io})
\]

\[
\Delta \phi \sim 2 R_{\text{sat}} E \quad (=4 \times 10^5 \text{ V @ Io})
\]

Flow dominated by magnetic energy \(B_J^2/2\mu_0\)

\(M_A < 1\) (no bow shock)

[1 case of TransAlfvénic shock @ Europa with Galileo? \(\text{Kivelson, 2005}\)]

[Piddington & Drake, 1968; Goldreich & Lynden-Bell, 1969]
- **Current Generators** [cont’d]

Current induced by E (a few 10^6 A) closes
in Jupiter’s ionosphere (if $M_A << 1$, no j_\perp in MS, $2\int_{B\text{-line}} ds/V_A << \int_{\text{flow}} ds/V$ (unipolar inductor))
in Jupiter’s magnetosphere (if $M_A < 1$, j_\perp in MS, $2\int_{B\text{-line}} ds/V_A \geq \int_{\text{flow}} ds/V$ (Alfvén wings))

[Kivelson et al., 2004]
• **Current Generators** [cont’d]

- Dione interaction with Saturn MS?
- Enceladus? (exosphere, B draping [Dougherty et al., 2005])
- Titan, Rhea? (alternatively super/sub-Alfvénic interaction [Ledvina et al., 2004], induced radio emissions? [Menietti et al., 2007])

[Desch & Kaiser, 1981; Kurth et al., 1981]

SKR @ 174 kHz, 28 Oct. - 18 Dec. 1980

SKR @ 59 kHz, 10-18 Nov. 1980
• **Current Generators** [cont’d]

- **Magnetized satellite / MS interaction** [Kivelson et al., 2004]: B reconnection

\[P_{\text{dissipated}} \sim B_J^2/2\mu_0 V k\pi R_{\text{obstacle}}^2 \]

[McGrath et al., 2002; Feldman et al., 2000]

[Zarka et al., 2001, 2006]
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres ?
• Aurorae (and satellite-induced emissions)
 - Source = 1-10 keV electrons \Rightarrow acceleration required
 - Strong currents + low plasma density [Knight, 1972]
 - Reconnection + dipolarization (adiabatic)
 - Compressions, E_{\parallel}, waves …
 - \Rightarrow UV, IR, radio emissions
 - $\not=\,$ direct precipitation of SW in polar cusps

© F. Mottez

[Birkeland, 1910]
• Aurorae (and satellite-induced emissions) [cont’d]

[Clarke, Prangé…]
• Solar Wind / Solar Wind - Obstacle interaction
• Planetary Magnetic Fields
• Magnetospheric Boundaries
• Plasma Sources
• Plasma Circulation
• Role of Ionosphere
• Current Generators
• Aurorae (and satellite induced emissions)
• Exoplanetary Magnetospheres ?
- High SW pressure \Rightarrow compressed MS
- High SW power input \Rightarrow very energetic MS \Rightarrow intense e.m. emissions

[Zarka et al., 2001, 2006]
• Exoplanetary Magnetospheres? [cont’d]

- reconnection with stellar B
 (~ magnetic binaries, Ganymede-Jupiter) [Ip et al., 2004]
 or giant Io-Jupiter like interaction ($M_A < 1$ for hot Jupiters) [Zarka, 2006]

⇒ cf. observations by [Shkolnik et al., 2003, 2005]
Conclusions

• Variety of magnetospheric structures
 (function of SW strength, mass-loading…)
• Comparative approach of magnetospheres essential
• Saturn especially interesting because « intermediate »
• Prospects for exoplanets
• How can one do so much with so little mass?